6533b7defe1ef96bd1275f2b
RESEARCH PRODUCT
Chemi- and Bioluminescence of Cyclic Peroxides
Roland LindhYa-jun LiuPanče NaumovMorgane VacherDaniel Roca-sanjuánBo-wen DingWilhelm J. BaaderRomain Berraud-pacheIsabelle NavizetNicolas FerréIgnacio Fernández GalvánStefan Schrammsubject
Luminescence010402 general chemistry01 natural sciencesCatalysislaw.inventionFragmentation (mass spectrometry)BIOLUMINESCÊNCIAComputational chemistrylawArtificial systemsBioluminescenceSinglet stateComputingMilieux_MISCELLANEOUSChemiluminescenceMolecular Structure010405 organic chemistryChemistryGeneral ChemistryPeroxides0104 chemical sciences3. Good health[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryExcited stateYield (chemistry)Thermal dissociationLuminescent Measurementsdescription
Bioluminescence is a phenomenon that has fascinated mankind for centuries. Today the phenomenon and its sibling, chemiluminescence, have impacted society with a number of useful applications in fields like analytical chemistry and medicine, just to mention two. In this review, a molecular-orbital perspective is adopted to explain the chemistry behind chemiexcitation in both chemi- and bioluminescence. First, the uncatalyzed thermal dissociation of 1,2-dioxetane is presented and analyzed to explain, for example, the preference for triplet excited product states and increased yield with larger nonreactive substituents. The catalyzed fragmentation reaction and related details are then exemplified with substituted 1,2-dioxetanone species. In particular, the preference for singlet excited product states in that case is explained. The review also examines the diversity of specific solutions both in Nature and in artificial systems and the difficulties in identifying the emitting species and unraveling the color modulation process. The related subject of excited-state chemistry without light absorption is finally discussed. The content of this review should be an inspiration to human design of new molecular systems expressing unique light-emitting properties. An appendix describing the state-of-the-art experimental and theoretical methods used to study the phenomena serves as a complement.
year | journal | country | edition | language |
---|---|---|---|---|
2018-03-01 |