0000000000004287

AUTHOR

Roland Lindh

0000-0001-7567-8295

showing 24 related works from this author

Towards an accurate molecular orbital theory for excited states : Ethene, butadiene, and hexatriene

1993

A newly proposed quantum chemical approach for ab initio calculations of electronic spectra of molecular systems is applied to the molecules ethene, trans‐1,3‐butadiene, and trans‐trans‐1,3,5‐hexatriene. The method has the aim of being accurate to better than 0.5 eV for excitation energies and is expected to provide structural and physical data for the excited states with good reliability. The approach is based on the complete active space (CAS) SCF method, which gives a proper description of the major features in the electronic structure of the excited state, independent of its complexity, accounts for all near degeneracy effects, and includes full orbital relaxation. Remaining dynamic ele…

ErrorsGeneral Physics and AstronomyPolyenesElectronic structuresymbols.namesakeRydberg StatesAb initio quantum chemistry methodsComputational chemistrySinglet statePhysical and Theoretical ChemistryTriplet state:FÍSICA::Química física [UNESCO]AccuracyExcitationCalculation MethodsButadieneTripletsChemistryMolecular orbital theoryScf CalculationsExcited StatesCalculation Methods ; Quantum Chemistry ; Ab Initio Calculations ; Electron Spectra ; Butadiene ; Accuracy ; Scf Calculations ; Triplets ; Rydberg States ; Excitation ; Errors ; Polyenes ; Excited StatesQuantum ChemistryUNESCO::FÍSICA::Química físicaElectron SpectraExcited stateRydberg formulasymbolsRydberg stateAtomic physicsAb Initio Calculations
researchProduct

Computation of conical intersections by using perturbation techniques

2005

Multiconfigurational second-order perturbation theory, both in its single-state multiconfigurational second-order perturbation theory (CASPT2) and multistate (MS-CASPT2) formulations, is used to search for minima on the crossing seams between different potential energy hypersurfaces of electronic states in several molecular systems. The performance of the procedures is tested and discussed, focusing on the problem of the nonorthogonality of the single-state perturbative solutions. In different cases the obtained structures and energy differences are compared with available complete active space self-consistent field and multireference configuration interaction solutions. Calculations on dif…

Potential Energy SurfacesConfiguration Interactions ; Perturbation Theory ; Potential Energy Surfaces ; Molecular Electronic States ; SCF Calculations ; Lithium Compounds ; Organic Compounds ; Wave FunctionsOrganic CompoundsChemistryComputationUNESCO::FÍSICAConfiguration InteractionsGeneral Physics and AstronomyMultireference configuration interactionConical surfaceSCF CalculationsPotential energyWave FunctionsMaxima and minima:FÍSICA [UNESCO]Molecular Electronic StatesQuantum mechanicsPerturbation TheoryLithium CompoundsStatistical physicsComplete active spacePerturbation theory (quantum mechanics)Physical and Theoretical ChemistryWave functionThe Journal of Chemical Physics
researchProduct

Theoretical study of the dark photochemistry of 1,3-butadiene via the chemiexcitation of Dewar dioxetane.

2015

Excited-state chemistry is usually ascribed to photo-induced processes, such as fluorescence, phosphorescence, and photochemistry, or to bio-and chemiluminescence, in which light emission originates from a chemical reaction. A third class of excited-state chemistry is, however, possible. It corresponds to the photochemical phenomena produced by chemienergizing certain chemical groups without light - chemiexcitation. By studying Dewar dioxetane, which can be viewed as the combination of 1,2-dioxetane and 1,3-butadiene, we show here how the photo-isomerization channel of 1,3-butadiene can be reached at a later stage after the thermal decomposition of the dioxetane moiety. Multi-reference mult…

General Physics and AstronomyPhotochemistryChemical reactionQuantum chemistryDioxetaneReaction coordinatechemistry.chemical_compoundchemistryExcited stateTeoretisk kemiMoietyLight emissionPhysical and Theoretical ChemistryPhosphorescenceTheoretical ChemistryPhysical chemistry chemical physics : PCCP
researchProduct

Mechanism of activated chemiluminescence of cyclic peroxides: 1,2-dioxetanes and 1,2-dioxetanones

2017

Almost all chemiluminescent and bioluminescent reactions involve cyclic peroxides. The structure of the peroxide and reaction conditions determine the quantum efficiency of light emission. Oxidizable fluorophores, the so-called activators, react with 1,2-dioxetanones promoting the former to their first singlet excited state. This transformation is inefficient and does not occur with 1,2-dioxetanes; however, they have been used as models for the efficient firefly bioluminescence. In this work, we use the SA-CASSCF/CASPT2 method to investigate the activated chemiexcitation of the parent 1,2-dioxetane and 1,2-dioxetanone. Our findings suggest that ground state decomposition of the peroxide com…

010405 organic chemistryChemistryGeneral Physics and Astronomy010402 general chemistryPhotochemistrySupermolecule01 natural sciencesPeroxideLUCIFERIDAE0104 chemical scienceslaw.inventionchemistry.chemical_compoundlawExcited stateBioluminescenceLight emissionSinglet statePhysical and Theoretical ChemistryGround stateChemiluminescencePhysical Chemistry Chemical Physics
researchProduct

A theoretical analysis of the intrinsic light-harvesting properties of xanthopterin

2014

Belonging to the family of pterins, which are common chromophores in several bio-organisms, xanthopterin has been shown experimentally (Plotkin et al., 2010) to have the ability of acting as a light-harvesting molecule. In the present study, multiconfigurational second-order perturbation theory is used to determine the stability of distinct amino/imino and lactam/lactim tautomers and the absorption and emission spectroscopic characteristics, electron donor and acceptor properties and the electron and charge transfer efficiencies via π-stacking. The lactam–lactam form 3H5H (and in a lesser extent 1H5H) is predicted to have the most appropriate intrinsic characteristics for the light-harvesti…

Electron donorChromophoreCondensed Matter PhysicsPhotochemistryBiochemistryAcceptorEnolchemistry.chemical_compoundXanthopterinchemistryExcited stateTheoretical chemistryMoleculePhysical and Theoretical ChemistryComputational and Theoretical Chemistry
researchProduct

Nuclear Quadrupole Moment of 119Sn

2008

Second-order scalar-relativistic Douglas-Kroll-Hess density functional calculations of the electric field gradient, including an analytic correction of the picture change error, were performed for 34 tin compounds of which molecular structures and Sn-119 Mossbauer spectroscopy parameters are experimentally known. The components of the diagonalized electric field gradient tensor, V-xx,V-yy, V-zz, were used to determine the quantity V, which is proportional to the nuclear quadrupole splitting parameter Delta E. The slope of the linear correlation plot of the experimentally determined Delta E parameter versus the corresponding calculated V data allowed us to obtain an absolute value of the nuc…

Mössbauer spectroscopyrelativistic effectAnalytical chemistrychemistry.chemical_elementAbsolute valueQuadrupole splittingelectric field gradientchemistryCore electronSettore CHIM/03 - Chimica Generale E InorganicaElectric fieldtinQuadrupolePhysical and Theoretical ChemistryAtomic physicsTinElectric field gradientBasis setnuclear quadrupole splitting
researchProduct

OpenMolcas: From Source Code to Insight

2019

In this article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multico…

Wave functionSource codeField (physics)Computer sciencemedia_common.quotation_subjectInterfacesSemiclassical physics010402 general chemistry0601 Biochemistry and Cell Biology01 natural sciencesComputational scienceNOChemical calculationsMathematical methodschemical calculations ; electron correlation ; interfaces ; mathematical methods ; wave function0103 physical sciences0307 Theoretical and Computational ChemistryPhysical and Theoretical ChemistryWave functionWave function Interfaces Chemical calculations Mathematical methods Electron correlationComputingMilieux_MISCELLANEOUSmedia_commonChemical Physics010304 chemical physicsBasis (linear algebra)business.industryDensity matrix renormalization groupElectron correlationSoftware development0803 Computer Software0104 chemical sciencesComputer Science ApplicationsVisualization[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrybusiness
researchProduct

Chemi- and Bioluminescence of Cyclic Peroxides

2018

Bioluminescence is a phenomenon that has fascinated mankind for centuries. Today the phenomenon and its sibling, chemiluminescence, have impacted society with a number of useful applications in fields like analytical chemistry and medicine, just to mention two. In this review, a molecular-orbital perspective is adopted to explain the chemistry behind chemiexcitation in both chemi- and bioluminescence. First, the uncatalyzed thermal dissociation of 1,2-dioxetane is presented and analyzed to explain, for example, the preference for triplet excited product states and increased yield with larger nonreactive substituents. The catalyzed fragmentation reaction and related details are then exemplif…

Luminescence010402 general chemistry01 natural sciencesCatalysislaw.inventionFragmentation (mass spectrometry)BIOLUMINESCÊNCIAComputational chemistrylawArtificial systemsBioluminescenceSinglet stateComputingMilieux_MISCELLANEOUSChemiluminescenceMolecular Structure010405 organic chemistryChemistryGeneral ChemistryPeroxides0104 chemical sciences3. Good health[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryExcited stateYield (chemistry)Thermal dissociationLuminescent Measurements
researchProduct

Do 2-coordinate iodine(I) and silver(I) complexes form Nucleophilic Iodonium Interactions (NIIs) in solution?

2022

The interaction of a [bis(pyridine)iodine(I)]+ cation with a [bis(pyridine)silver(I)]+ cation, in which an iodonium ion acts as nucleophile by transferring electron density to the silver(I) cation, is reinvestigated herein. No measurable interaction is observed between the cationic species in solution by NMR; DFT reveals that if there is an attractive interaction between this complexes in solution, it is dominantly the π-π interaction of pyridines peerReviewed

jodikemialliset yhdisteethopeaNMR halogen bondkidetiede
researchProduct

Essential on the Photophysics and Photochemistry of the Indole Chromophore by Using a Totally Unconstrained Theoretical Approach

2015

Indole is a chromophore present in many different molecules of biological interest, such as the essential amino acid tryptophan and the neurotransmitter serotonin. On the basis of CASPT2//CASSCF quantum chemical calculations, the photophysical properties of the system after UV irradiation have been studied through the exploration of the potential energy hypersurfaces of the singlet and triplet low-lying valence excited states. In contrast to previous studies, the present work has been carried out without imposing any restriction to the geometry of the molecule (C1 symmetry) and by performing minimum energy path calculations, which is the only instrument able to provide the lowest-energy evo…

Indole testeducation.field_of_study010304 chemical physicsChemistryPopulationQuantum yieldConical intersectionChromophore010402 general chemistryPhotochemistry01 natural sciencesPotential energy0104 chemical sciencesComputer Science ApplicationsExcited state0103 physical sciencesSinglet statePhysical and Theoretical ChemistryeducationJournal of Chemical Theory and Computation
researchProduct

Calibration of Cholesky Auxiliary Basis Sets for Multiconfigurational Perturbation Theory Calculations of Excitation Energies

2010

The accuracy of auxiliary basis sets derived from Cholesky decomposition of two-electron integrals is assessed for excitation energies calculated at the state-average complete active space self-consistent field (CASSCF) and multiconfigurational second order perturbation theory (CASPT2) levels of theory using segmented as well as generally contracted atomic orbital basis sets. Based on 196 valence excitations in 26 organic molecules and 72 Rydberg excitations in 3 organic molecules, the results show that Cholesky auxiliary basis sets can be used without compromising the accuracy of the multiconfigurational methods. Specifically, with a decomposition threshold of 10(-4) au, the mean error due…

PhysicsValence (chemistry)Mean squared errorComputer Science Applicationssymbols.namesakeAtomic orbitalRydberg formulasymbolsComplete active spacePhysical and Theoretical ChemistryAtomic physicsBasis setExcitationCholesky decompositionJournal of Chemical Theory and Computation
researchProduct

Proton/Hydrogen Transfer Mechanisms in the Guanine–Cytosine Base Pair: Photostability and Tautomerism

2013

Proton/hydrogen-transfer processes have been broadly studied in the past 50 years to explain the photostability and the spontaneous tautomerism in the DNA base pairs. In the present study, the CASSCF/CASPT2 methodology is used to map the two-dimensional potential energy surfaces along the stretched NH reaction coordinates of the guanine–cytosine (GC) base pair. Concerted and stepwise pathways are explored initially in vacuo, and three mechanisms are studied: the stepwise double proton transfer, the stepwise double hydrogen transfer, and the concerted double proton transfer. The results are consistent with previous findings related to the photostability of the GC base pair, and a new contrib…

Proton010405 organic chemistryHydrogen bondBase pairGuanineAb initioNanotechnologyDNA010402 general chemistry01 natural sciencesTautomer0104 chemical sciencesComputer Science Applicationschemistry.chemical_compoundchemistryComputational chemistryTeoretisk kemiTheoretical chemistryPhysical and Theoretical ChemistryTheoretical ChemistryCytosineJournal of Chemical Theory and Computation
researchProduct

Cholesky decomposition techniques in electronic structure theory

2011

We review recently developed methods to efficiently utilize the Cholesky decomposition technique in electronic structure calculations. The review starts with a brief introduction to the basics of the Cholesky decomposition technique. Subsequently, examples of applications of the technique to ab inito procedures are presented. The technique is demonstrated to be a special type of a resolution-of-identity or density-fitting scheme. This is followed by explicit examples of the Cholesky techniques used in orbital localization, computation of the exchange contribution to the Fock matrix, in MP2, gradient calculations, and so-called method specific Cholesky decomposition. Subsequently, examples o…

Computer and Information SciencesTheoretical computer scienceBasis (linear algebra)Computer scienceCalibration (statistics)ComputationAb initioMathematicsofComputing_NUMERICALANALYSISData- och informationsvetenskapKemiType (model theory)Fock matrixChemical SciencesPruning (decision trees)AlgorithmCholesky decomposition
researchProduct

Theoretical studies of isomers of C 3 H 2 using a multiconfigurational approach

2000

The C3H2 isomers are important molecules in interstellar space. An understanding of their electronic structure can contribute significantly to the interpretation of interstellar spectra. In a theoretical study of the C3H2 isomers a multiconfigurational treatment is of interest because many of the isomers are carbenes or diradicals. We present such an investigation of all possible C3H2 isomers. The most important features of their electronic and vibrational spectra are calculated. Earlier theoretical studies are reviewed and it is shown that the present study yields the same order of stability for the singlet and triplet states as most previous studies.

Computational chemistryChemistryPhysics::Atomic and Molecular ClustersMoleculeElectronic structureSinglet statePhysics::Chemical PhysicsPhysical and Theoretical ChemistryAstrophysics::Galaxy AstrophysicsSpectral lineVibrational spectraTheoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
researchProduct

Cover Feature: Molecular Basis of the Chemiluminescence Mechanism of Luminol (Chem. Eur. J. 20/2019)

2019

chemistry.chemical_compoundComputational chemistrylawChemistryOrganic ChemistryCover (algebra)General ChemistryCatalysisChemiluminescencelaw.inventionLuminolChemistry – A European Journal
researchProduct

Local properties of quantum chemical systems: the LoProp approach.

2004

A new method is presented, which makes it possible to partition molecular properties like multipole moments and polarizabilities, into atomic and interatomic contributions. The method requires a subdivision of the atomic basis set into occupied and virtual basis functions for each atom in the molecular system. The localization procedure is organized into a series of orthogonalizations of the original basis set, which will have as a final result a localized orthonormal basis set. The new localization procedure is demonstrated to be stable with various basis sets, and to provide physically meaningful localized properties. Transferability of the methyl properties for the alkane series and of t…

Polarisabilitybusiness.industryChemistryGeneral Physics and AstronomyBasis functionQuantum chemistryQuantum mechanicsddc:540Theoretical chemistryPhysics::Atomic and Molecular ClustersPartition (number theory)Molecular momentsOrthonormal basisStatistical physicsSet theoryPhysical and Theoretical ChemistrybusinessMultipole expansionQuantum chemistryBasis setSubdivisionThe Journal of chemical physics
researchProduct

The prediction of the nuclear quadrupole splitting of 119Sn Mössbauer spectroscopy data by scalar relativistic DFT calculations.

2006

The electric field gradient components for the tin nucleus of 34 tin compounds of experimentally known structures and Sn-119 Mossbauer spectroscopy parameters were computed at the scalar relativistic density functional theory level of approximation. The theoretical values of the electric field gradient components were used to determine a quantity, V, which is proportional to the nuclear quadrupole splitting parameter (Delta E). In a subsequent linear regression analysis the effective nuclear quadrupole moment, Q, was evaluated. The value of (11.9 +/- 0.1) fm(2) is a significant improvement over the non-relativistic result of (15.2 +/- 4.4) fm(2) and is in agreement with the experimental val…

ChemistryOrganic ChemistryScalar (physics)Analytical chemistryGeneral ChemistryElectronic structureQuadrupole splittingCatalysisQuadrupoleMössbauer spectroscopyDensity functional theoryAtomic physicsSpectroscopyElectric field gradientChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Accurate ab initio density fitting for multiconfigurational self-consistent field methods

2008

Using Cholesky decomposition and density fitting to approximate the electron repulsion integrals, an implementation of the complete active space self-consistent field (CASSCF) method suitable for large-scale applications is presented. Sample calculations on benzene, diaquo-tetra- μ -acetato-dicopper(II), and diuraniumendofullerene demonstrate that the Cholesky and density fitting approximations allow larger basis sets and larger systems to be treated at the CASSCF level of theory with controllable accuracy. While strict error control is an inherent property of the Cholesky approximation, errors arising from the density fitting approach are managed by using a recently proposed class of auxi…

PhysicsBasis (linear algebra)Field (physics)Ab initioGeneral Physics and AstronomyElectronUNESCO::FÍSICA::Química físicaPhysics and Astronomy (all)Ab initio quantum chemistry methodsComputational chemistryOrganic compoundsDensity functional theorySCF calculationsDensity functional theoryComplete active spaceStatistical physicsAb initio calculationsPhysical and Theoretical ChemistryAb initio calculations ; Density functional theory ; Organic compounds ; SCF calculations:FÍSICA::Química física [UNESCO]Cholesky decomposition
researchProduct

Revisiting the Nonadiabatic Process in 1,2-Dioxetane.

2015

Determining the ground and excited-state decomposition mechanisms of 1,2-dioxetane is essential to understand the chemiluminescence and bioluminescence phenomena. Several experimental and theoretical studies has been performed in the past without reaching a converged description. The reason is in part associated with the complex nonadiabatic process taking place along the reaction. The present study is an extension of a previous work (De Vico, L.; Liu, Y.-J.; Krogh, J. W.; Lindh, R. J. Phys. Chem. A 2007, 111, 8013-8019) in which a two-step mechanism was established for the chemiluminescence involving asynchronous O-O' and C-C' bond dissociations. New high-level multistate multi configurati…

Ab initio molecular dynamicschemistry.chemical_compound12-DioxetanechemistryComputational chemistryQuantum mechanicsTheoretical chemistrySinglet statePhysical and Theoretical ChemistryHigh ratioComputer Science ApplicationsJournal of chemical theory and computation
researchProduct

Analytic high-order Douglas–Kroll–Hess electric field gradients

2007

In this work we present a comprehensive study of analytical electric field gradients in hydrogen halides calculated within the high-order Douglas-Kroll-Hess (DKH) scalar-relativistic approach taking picture-change effects analytically into account. We demonstrate the technical feasibility and reliability of a high-order DKH unitary transformation for the property integrals. The convergence behavior of the DKH property expansion is discussed close to the basis set limit and conditions ensuring picture-change-corrected results are determined. Numerical results are presented, which show that the DKH property expansion converges rapidly toward the reference values provided by four-component met…

Classical mechanicsChemistryOperator (physics)Convergence (routing)General Physics and AstronomyApplied mathematicsUnitary matrixLimit (mathematics)Perturbation theory (quantum mechanics)Physical and Theoretical ChemistryUnitary transformationParametrizationBasis set
researchProduct

Molecular Basis of the Chemiluminescence Mechanism of Luminol

2019

Light emission from luminol is probably one of the most popular chemiluminescence reactions due to its use in forensic science, and has recently displayed promising applications for the treatment of cancer in deep tissues. The mechanism is, however, very complex and distinct possibilities have been proposed. By efficiently combining DFT and CASPT2 methodologies, the chemiluminescence mechanism has been studied in three steps: 1)luminol oxygenation to generate the chemiluminophore, 2)a chemiexcitation step, and 3)generation of the light emitter. The findings demonstrate that the luminol double-deprotonated dianion activates molecular oxygen, diazaquinone is not formed, and the chemiluminopho…

CASPT2010405 organic chemistryChemistryOrganic ChemistryGeneral Chemistryelectron transfer010402 general chemistryPhotochemistry01 natural scienceschemiluminescenceCatalysis0104 chemical sciencesLuminollaw.inventionreaction mechanismschemistry.chemical_compoundlawdensity functional calculationsTeoretisk kemicancerLight emissionTheoretical ChemistryChemiluminescenceChemistry – A European Journal
researchProduct

2MOLCAS as a development platform for quantum chemistry software

2004

This work presents the quantum chemistry package MOLCAS, with emphasis on its usefulness as a platform for developing new quantum chemical codes, and the reader is assumed to be familiar with such a process. The development of new codes for quantum chemistry is a time-consuming job that can be dramatically simplified by using libraries for standard problems (such as calculation of integrals), and tools to surmount computer language and operating system limitations. The MOLCAS quantum chemistry software contains modules for a variety of quantum chemical methods, such as Hartree-Fock (HF), density functional theory (DFT), coupled-cluster (CC), and multiconfigurational (MCSCF) approaches, incl…

Source codeApplication programming interfaceSIMPLE (military communications protocol)business.industryComputer sciencemedia_common.quotation_subjectProcess (computing)Software developmentCondensed Matter PhysicsAtomic and Molecular Physics and OpticsComputational scienceSoftwareDistributed developmentPerturbation theory (quantum mechanics)Physical and Theoretical Chemistrybusinessmedia_commonInternational Journal of Quantum Chemistry
researchProduct

On the photophysics and photochemistry of the water dimer

2012

The photochemistry of the water dimer irradiated by UV light is studied by means of the complete active space perturbation theory//complete active space self-consistent field (CASPT2//CASSCF) method and accurate computational approaches like as minimum energy paths. Both electronic structure computations and ab initio molecular dynamics simulations are carried out. The results obtained show small shifts relative to a single water molecule on the vertical excitation energies of the dimer due to the hydrogen bond placed between the water donor (W(D)) and the water acceptor (W(A)). A red-shift and a blue-shift are predicted for the W(D) and W(A), respectively, supporting previous theoretical a…

Water dimer010304 chemical physicsHydrogenHydrogen bondDimerGeneral Physics and Astronomychemistry.chemical_element010402 general chemistryPhotochemistry7. Clean energy01 natural sciencesMolecular physics0104 chemical scienceschemistry.chemical_compoundchemistry13. Climate actionAb initio quantum chemistry methodsExcited state0103 physical sciencesMoleculeComplete active spacePhysical and Theoretical ChemistryThe Journal of Chemical Physics
researchProduct

A surface hopping algorithm for nonadiabatic minimum energy path calculations

2015

The article introduces a robust algorithm for the computation of minimum energy paths transiting along regions of near-to or degeneracy of adiabatic states. The method facilitates studies of excited state reactivity involving weakly avoided crossings and conical intersections. Based on the analysis of the change in the multiconfigurational wave function the algorithm takes the decision whether the optimization should continue following the same electronic state or switch to a different state. This algorithm helps to overcome convergence difficulties near degeneracies. The implementation in the MOLCAS quantum chemistry package is discussed. To demonstrate the utility of the proposed procedur…

Surface PropertiesComputationSurface hoppingCASSCFretinalHeterocyclic Compounds 1-RingHeterocyclic CompoundsasulamConvergence (routing)dioxetaneAdiabatic processWave functionSchiff BasesChemistrysurface hopping algorithmGeneral ChemistryKineticsComputational MathematicsExcited statePath (graph theory)RetinaldehydeQuantum TheoryThermodynamicsCarbamatesCASSCF; asulam; dioxetane; minimum energy path; retinal; surface hopping algorithm; thymineProtonsDegeneracy (mathematics)Algorithmminimum energy pathAlgorithmsThymineJournal of Computational Chemistry
researchProduct