6533b85afe1ef96bd12ba01d
RESEARCH PRODUCT
The prediction of the nuclear quadrupole splitting of 119Sn Mössbauer spectroscopy data by scalar relativistic DFT calculations.
Roland LindhGiampaolo BaroneJesper Wisborg Kroghsubject
ChemistryOrganic ChemistryScalar (physics)Analytical chemistryGeneral ChemistryElectronic structureQuadrupole splittingCatalysisQuadrupoleMössbauer spectroscopyDensity functional theoryAtomic physicsSpectroscopyElectric field gradientdescription
The electric field gradient components for the tin nucleus of 34 tin compounds of experimentally known structures and Sn-119 Mossbauer spectroscopy parameters were computed at the scalar relativistic density functional theory level of approximation. The theoretical values of the electric field gradient components were used to determine a quantity, V, which is proportional to the nuclear quadrupole splitting parameter (Delta E). In a subsequent linear regression analysis the effective nuclear quadrupole moment, Q, was evaluated. The value of (11.9 +/- 0.1) fm(2) is a significant improvement over the non-relativistic result of (15.2 +/- 4.4) fm(2) and is in agreement with the experimental value of (10.9 +/- 0.8) fm(2). The average mean square error Delta E-calcd-Delta E-exptl = +/- 0.3 mm s(-1) is a factor of two smaller than in the non-relativistic case. Thus, the approach has a quality which provides accurate support for the structure interpretation by Sn-119 spectroscopy. It was noted that geometry optimization at the relativistic level does not significantly increase the quality of the results compared with non-relativistic optimized structures. The accuracy in the approach called on us to consider the singlet-triplet state nature of the electronic structure of one of the investigated compounds.
year | journal | country | edition | language |
---|---|---|---|---|
2006-06-23 | Chemistry (Weinheim an der Bergstrasse, Germany) |