DNA nucleobase properties and photoreactivity: Modeling environmental effects
Abstract The accurate ab initio quantum chemical (QM) method multiconfigurational second-order perturbation (CASSPT2)/complete active space self-consistent field (CASSCF) has been used in conjunction with molecular mechanics (MM) procedures to compute molecular properties and photoinduced reactivity of DNA/RNA nucleobases (NABs) in isolation and within a realistic environment, in which the double helix strand, the aqueous media, and the external counterions are included. It is illustrated that the use of an MM model is helpful both to account for short- and long-range effects of the system surrounding the QM molecular core and to provide the proper structural constraints that allow more acc…
Chemi- and Bioluminescence of Cyclic Peroxides
Bioluminescence is a phenomenon that has fascinated mankind for centuries. Today the phenomenon and its sibling, chemiluminescence, have impacted society with a number of useful applications in fields like analytical chemistry and medicine, just to mention two. In this review, a molecular-orbital perspective is adopted to explain the chemistry behind chemiexcitation in both chemi- and bioluminescence. First, the uncatalyzed thermal dissociation of 1,2-dioxetane is presented and analyzed to explain, for example, the preference for triplet excited product states and increased yield with larger nonreactive substituents. The catalyzed fragmentation reaction and related details are then exemplif…