0000000000423165

AUTHOR

Ali Alavi

showing 2 related works from this author

OpenMolcas: From Source Code to Insight

2019

In this article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multico…

Wave functionSource codeField (physics)Computer sciencemedia_common.quotation_subjectInterfacesSemiclassical physics010402 general chemistry0601 Biochemistry and Cell Biology01 natural sciencesComputational scienceNOChemical calculationsMathematical methodschemical calculations ; electron correlation ; interfaces ; mathematical methods ; wave function0103 physical sciences0307 Theoretical and Computational ChemistryPhysical and Theoretical ChemistryWave functionWave function Interfaces Chemical calculations Mathematical methods Electron correlationComputingMilieux_MISCELLANEOUSmedia_commonChemical Physics010304 chemical physicsBasis (linear algebra)business.industryDensity matrix renormalization groupElectron correlationSoftware development0803 Computer Software0104 chemical sciencesComputer Science ApplicationsVisualization[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrybusiness
researchProduct

The Ground State Electronic Energy of Benzene.

2020

We report on the findings of a blind challenge devoted to determining the frozen-core, full configuration interaction (FCI) ground state energy of the benzene molecule in a standard correlation-consistent basis set of double-$\zeta$ quality. As a broad international endeavour, our suite of wave function-based correlation methods collectively represents a diverse view of the high-accuracy repertoire offered by modern electronic structure theory. In our assessment, the evaluated high-level methods are all found to qualitatively agree on a final correlation energy, with most methods yielding an estimate of the FCI value around $-863$ m$E_{\text{H}}$. However, we find the root-mean-square devia…

Computer sciencephysics.chem-phFOS: Physical sciencesElectronic structure01 natural sciencesFull configuration interactionQuality (physics)5102 Atomic Molecular and Optical PhysicsAffordable and Clean EnergyPhysics - Chemical Physics0103 physical sciencesGeneral Materials ScienceStatistical physicsPhysical and Theoretical Chemistry010306 general physicsBasis setChemical Physics (physics.chem-ph)34 Chemical Sciences010304 chemical physics3. Good healthPhysical SciencesChemical Sciences3406 Physical ChemistryBenchmark (computing)7 Affordable and Clean EnergyElectronic energyGround state51 Physical SciencesEnergy (signal processing)
researchProduct