0000000000423215

AUTHOR

Harald Borbe

?-Carboline binding indicates the presence of benzodiazepine receptor subclasses in the bovine central nervous system

Receptor binding studies were performed with tritiated propyl β-carboline-3-carboxylate ([3H]PrCC), tritiated ethyl β-carboline-3-carboxylate ([3H]ECC), and tritiated flunitrazepam ([3H]FNT) in membrane preparations from different regions of the bovine brain and retina. Specific binding in all regions investigated was associated with benzodiazepine receptor sites. However, not all benzodiazepine receptor sites. However, not all benzodiazepine receptors in the regions investigated as determined by the specific binding of tritiated flunitrazepam ([3H]FNT) are available for [3H]PrCC suggesting that specific [3H]PrCC binding labels only one subclass or subpopulation of the benzodiazepine recept…

research product

1-Methyl-?-carboline (Harmane), a potent endogenous inhibitor of benzodiazepine receptor binding

The interaction of several beta-carbolines with specific [3H]-flunitrazepam binding to benzodiazepine receptors in rat brain membranes was investigated. Out of the investigated compounds, harmane and norharmane were the most potent inhibitors of specific [3H]-flunitrazepam binding, with IC50-values in the micromolar range. All other derivatives, including harmine, harmaline, and several tetrahydroderivatives were at least ten times less potent. Harmane has been previously found in rat brain and human urine, so it is the most potent endogenous inhibitor of specific [3H]-flunitrazepam binding known so far, with a several fold higher affinity for the benzodiazepine receptor than inosine and hy…

research product