0000000000423244

AUTHOR

Giovanni Filatrella

0000-0003-3546-8618

showing 4 related works from this author

Anomalous transport effects on switching currents of graphene-based Josephson junctions

2017

We explore the effect of noise on the ballistic graphene-based small Josephson junctions in the framework of the resistively and capacitively shunted model. We use the non-sinusoidal current-phase relation specific for graphene layers partially covered by superconducting electrodes. The noise induced escapes from the metastable states, when the external bias current is ramped, give the switching current distribution, i.e. the probability distribution of the passages to finite voltage from the superconducting state as a function of the bias current, that is the information more promptly available in the experiments. We consider a noise source that is a mixture of two different types of proce…

DYNAMICSJosephson effectJosephson junctionsGaussianFOS: Physical sciencesgraphemeBioengineering01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmaslaw.inventionsymbols.namesakelawJosephson junction0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Graphene; Josephson junctions; Levy processes; Non-thermal noise; Bioengineering; Chemistry (all); Materials Science (all); Mechanics of Materials; Mechanical Engineering; Electrical and Electronic EngineeringMechanics of MaterialGeneral Materials ScienceElectrical and Electronic Engineering010306 general physicsPhysicsSuperconductivityLevy processesCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsGrapheneMechanical EngineeringSTABLE RANDOM-VARIABLESChemistry (all)Non-thermal noiseBiasingGeneral ChemistryGraphene; Josephson junctions; Levy processes; Non-thermal noise; STABLE RANDOM-VARIABLES; DYNAMICSLevy processeMechanics of MaterialsPhysics - Data Analysis Statistics and ProbabilitysymbolsProbability distributionMaterials Science (all)GrapheneTransport phenomenaData Analysis Statistics and Probability (physics.data-an)
researchProduct

Josephson-based Threshold Detector for Lévy-Distributed Current Fluctuations

2019

We propose a threshold detector for Lévy-distributed fluctuations based on a Josephson junction. The Lévy-noise current added to a linearly ramped bias current results in clear changes in the distribution of switching currents out of the zero-voltage state of the junction. We observe that the analysis of the cumulative distribution function of the switching currents supplies information on both the characteristics' shape parameter α of the Lévy statistics. Moreover, we discuss a theoretical model, which allows characteristic features of the Lévy fluctuations to be extracted from a measured distribution of switching currents. In view of these results, this system can effectively find an appl…

Josephson effect---Current (mathematics)NOISE; FLIGHTS; FLUORESCENCE; LIFETIME; MODEL; STATE; FIELDGeneral Physics and Astronomy02 engineering and technologyLIFETIMEFault (power engineering)01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della MateriaNOISE0103 physical sciencesStatistical physicsSuperconducting electronicsFLUORESCENCEFIELD010306 general physicsPhysicsResistive touchscreenDetectorFLIGHTSState (functional analysis)Josephson junctions Lévy processes non-thermal noise current fluctuations021001 nanoscience & nanotechnologySTATEMODEL0210 nano-technology
researchProduct

Josephson-junction-based axion detection through resonant activation

2022

We discuss the resonant activation phenomenon on a Josephson junction due to the coupling of the Josephson system with axions. We show how such an effect can be exploited for axion detection. A nonmonotonic behavior, with a minimum, of the mean switching time from the superconducting to the resistive state versus the ratio of the axion energy and the Josephson plasma energy is found. We demonstrate how variations in switching times make it possible to detect the presence of the axion field. An experimental protocol for observing axions through their coupling with a Josephson system is proposed.

Settore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciCondensed Matter - Mesoscale and Nanoscale PhysicsFieldsPhysics::Instrumentation and DetectorsCondensed Matter - SuperconductivityHigh Energy Physics::PhenomenologyFOS: Physical sciencesStatistical PhysicsNonlinear DynamicsAstrophysicsParticlesResonant activationCondensed MatterCondensed Matter; Materials ; Applied Physics; Statistical PhysicsNonlinear Dynamics; Gravitation; Cosmology ; AstrophysicsParticles ; FieldsCosmologySuperconductivity (cond-mat.supr-con)High Energy Physics::TheoryHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)AxionCondensed Matter::SuperconductivityJosephson junctionMesoscale and Nanoscale Physics (cond-mat.mes-hall)Dark matterMaterialsApplied PhysicsGravitation
researchProduct

Voltage drop across Josephson junctions for L\'evy noise detection

2020

We propose to characterize L\'evy-distributed stochastic fluctuations through the measurement of the average voltage drop across a current-biased Josephson junction. We show that the noise induced switching process in the Josephson washboard potential can be exploited to reveal and characterize L\'evy fluctuations, also if embedded in a thermal noisy background. The measurement of the average voltage drop as a function of the noise intensity allows to infer the value of the stability index that characterizes L\'evy-distributed fluctuations. An analytical estimate of the average velocity in the case of a L\'evy-driven escape process from a metastable state well agrees with the numerical calc…

Josephson effectPhysicsWork (thermodynamics)Settore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityFunction (mathematics)Condensed Matter::Mesoscopic Systems and Quantum Hall EffectSignalLévy noiseJosephson junctionCondensed Matter::SuperconductivityMetastabilityThermalstochastic processesStatistical physicsVoltage dropQuantum tunnelling
researchProduct