0000000000423754

AUTHOR

C Olivetto

showing 3 related works from this author

Transmission of light in deep sea water at the site of the Antares neutrino telescope

2005

The ANTARES neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the ANTARES site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length lambda_abs and an effective scattering length lambda_sct^eff. The values for …

PhotomultiplierPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsNeutrino telescopeAstrophysicsLambda01 natural sciencesLight scattering[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Sea water properties: absorption and transmission of lightHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesAngular resolution07.89.+b 29.40.Ka 42.25.Bs 42.68.Xy 92.10.Bf 92.10.Pt 95.55.Vj010306 general physicsCherenkov radiationPhysicsneutrino telescope undersea Cherenkov detectors sea water properties absorption and transmission of lightUndersea Cherenkov detectors[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsScatteringAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsAttenuation lengthSea water properties: absorption and transmission of light.Astronomy and AstrophysicsScattering lengthabsorption and transmission of lightHigh Energy Physics - Phenomenology13. Climate actionFísica nuclearsea water propertiesAstroparticle Physics
researchProduct

Sedimentation and Fouling of Optical Surfaces at the ANTARES Site

2003

ANTARES is a project leading towards the construction and deployment of a neutrino telescope in the deep Mediterranean Sea. The telescope will use an array of photomultiplier tubes to detect the Cherenkov light emitted by muons resulting from the interaction with matter of high energy neutrinos. In the vicinity of the deployment site the ANTARES collaboration has performed a series of in-situ measurements to study the change in light transmission through glass surfaces during immersions of several months. The average loss of light transmission is estimated to be only ~2% at the equator of a glass sphere one year after deployment. It decreases with increasing zenith angle, and tends to satur…

PhotomultiplierTransmission lossEquatorMineralogyFOS: Physical sciencesAstrophysics[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph]Neutrino telescopeAstrophysics01 natural scienceslaw.inventionTelescope[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]High Energy Physics - Phenomenology (hep-ph)law0103 physical sciencesfouling; neutrino telescope; sea water properties; sedimentation; undersea cherenkov detectors14. Life underwater010306 general physicsCherenkov radiationZenithPhysicsUndersea Cherenkov detectors[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)Sea water propertieAstronomy and AstrophysicsFoulingSedimentationHigh Energy Physics - Phenomenology[PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Física nuclearNeutrinoSedimentation
researchProduct

Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light

2019

Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1 dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%-8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the thi…

neutron star: binaryGravitational waves detectionGeneral Physics and Astronomy01 natural sciencesvacuum stateNOISEinterferometric detectorLIGOnoise: quantumgravitational waves; squeezing; vacuumSettore FIS/01PhysicsQuantum opticsPhysicsQuantum limitQuantum noiseDetectorPhysical Sciencesgravitational waves squeezed lightinterferometric detectorsGravitational waveSqueezed coherent statePhysics Multidisciplinarysqueezed stateGravitation and AstrophysicshorizonGravitational wavesGeneral Relativity and Quantum CosmologyOpticsSettore FIS/05 - Astronomia e Astrofisica0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]SDG 7 - Affordable and Clean Energy010306 general physicsenhancementAstrophysiqueScience & Technology/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energybusiness.industryShot noisegravitational radiationgravitational waves thermal noisesensitivityLIGOdetector: sensitivityQuantum technology* Automatic Keywords *VIRGOinjectionPhysics and Astronomygravitational radiation detector: interferometerGravitational waves; interferometric detectors; noiseWAVEbusiness[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]gravitational waves nonlinear optics quantum opticsPhysical Review Letters
researchProduct