Pancreatic Ductal Adenocarcinoma (PDAC) Organoids: The Shining Light at the End of the Tunnel for Drug Response Prediction and Personalized Medicine.
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) causes massive medical problems because of late diagnosis and limited responsiveness to standard chemotherapeutic treatments. This makes PDAC one of the major causes of death by cancer. To address this problem, novel tools for early diagnosis and therapy are needed. The recent development of PDAC organoids, which represent micro-scale mini-tumors, offers promising new options for personalized drug-testing based on primary PDAC patient material. This overview article summarizes and discusses the current state-of-the-art in exploiting the organoid technology to improve clinical management of PDAC. Abstract Pancreatic ductal adenocarcinoma…
RINT1 Loss Impairs Retinogenesis Through TRP53-Mediated Apoptosis
Genomic instability in the central nervous system (CNS) is associated with defective neurodevelopment and neurodegeneration. Congenital human syndromes that affect the CNS development originate from mutations in genes of the DNA damage response (DDR) pathways. RINT1 (Rad50-interacting protein 1) is a partner of RAD50, that participates in the cellular responses to DNA double-strand breaks (DSB). Recently, we showed that Rint1 regulates cell survival in the developing brain and its loss led to premature lethality associated with genomic stability. To bypass the lethality of Rint1 inactivation in the embryonic brain and better understand the roles of RINT1 in CNS development, we conditionally…
ATRIP protects progenitor cells against DNA damage in vivo
AbstractThe maintenance of genomic stability during the cell cycle of progenitor cells is essential for the faithful transmission of genetic information. Mutations in genes that ensure genome stability lead to human developmental syndromes. Mutations in Ataxia Telangiectasia and Rad3-related (ATR) or in ATR-interacting protein (ATRIP) lead to Seckel syndrome, which is characterized by developmental malformations and short life expectancy. While the roles of ATR in replicative stress response and chromosomal segregation are well established, it is unknown how ATRIP contributes to maintaining genomic stability in progenitor cells in vivo. Here, we generated the first mouse model to investigat…
Telomerase and pluripotency factors jointly regulate stemness in pancreatic cancer stem cells
© 2021 by the authors.
Progenitor death drives retinal dysplasia and neuronal degeneration in a mouse model of Atrip-Seckel syndrome
ABSTRACT Seckel syndrome is a type of microcephalic primordial dwarfism (MPD) that is characterized by growth retardation and neurodevelopmental defects, including reports of retinopathy. Mutations in key mediators of the replication stress response, the mutually dependent partners ATR and ATRIP, are among the known causes of Seckel syndrome. However, it remains unclear how their deficiency disrupts the development and function of the central nervous system (CNS). Here, we investigated the cellular and molecular consequences of ATRIP deficiency in different cell populations of the developing murine neural retina. We discovered that conditional inactivation of Atrip in photoreceptor neurons …