0000000000424028
AUTHOR
Cesare Cecchi-pestellini
SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES
There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ult…
Role of clays in protecting adsorbed DNA against X-ray radiation
The X-ray emission of the young Sun was much harder and intense than today and might have played a significant role in the evolution of complex organics in protoplanetary environments. We investigate the effects of soft X-rays on tryptophan molecules in aqueous solutions at room temperature. As results of the irradiation experiments we detect several light species indicative of fragmentation, together with large molecular structures such as tryptophan dipeptide and tripeptide. Complexification is more evident in H2O solution than in D2O, probably due to isotopic effects. The abundances of peptides depend on the irradiation dose and decrease with increasing energy deposition. Radicals such a…
Synthesis of complex organic molecules in soft x-ray irradiated ices
We study the chemical evolution of H2O:CO:NH3 ice mixtures irradiated with soft X-rays, in the range 250-1250 eV. We identify many nitrogen-bearing molecules such as e.g., OCN-, NH4+ , HNCO, CH3CN, HCONH2, and NH2COCONH2. Several infrared features are compatible with glycine or its isomers. During the irradiation, we detected through mass spectroscopy many species desorbing the ice. Such findings support either the infrared identifications and reveal less abundant species with not clear infrared features. Among them, m/z = 57 has been ascribed to methyl isocyanate (CH3NCO), a molecule of prebiotic relevance, recently detected in protostellar environments. During the warm up after the irradi…
The relative role of EUV radiation and X-rays in the heating of hydrogen-rich exoplanet atmospheres
Aims. We study the relative role of EUV and X-ray radiation in the heating of hydrogen-rich planet atmospheres with different composition and electron content. Methods. An accurate photo-ionization model has been used to follow the primary photo-electron energy deposition throughout the atmosphere. Results. Heating rates and efficiencies have been computed, together with column density cut-offs at which photons of given energies stop their heating production inside the atmosphere. Assuming 100 eV as the energy borderline between the extreme ultraviolet spectral range and X-rays we find that when the absorbing hydrogen column density is higher than 10 20 cm −2 only X-rays can heat the gas. E…
Soft X-Ray Irradiation of Methanol Ice: Implication for H2CO Formation in Interstellar Regions
We performed 0.3 keV soft X-ray irradiation of a methanol ice at 8 K under ultra-high vacuum conditions. To the best of our knowledge, this is the first time that soft X-rays are used to study photolysis of ice analogs. Despite the low irradiation dose of 10{sup -6} photons molecule{sup -1}, the formation of formaldehyde has been observed. The results of our experiments suggest that X-rays may be a promising candidate to the formation of complex molecules in regions where UV radiation is severely inhibited.
Stellar X-ray heating of planet atmospheres
Aims. To investigate the effects of the stellar X-ray irradiation on planet atmospheres, we study the X-ray transfer and energy deposition in a hydrogen rich gas. Methods. We construct an accurate X-ray transfer model taking both photoionization and Compton scattering into account; the electron energy deposition is followed by tracking the discrete exchange processes between electrons and the gas mixture. Results. Exospheric heating rates are derived as functions of the pressure in model atmospheres using a wide range of X-ray luminosity, spectral hardness representative of different stellar ages, and distances from the parent star. The computed heating rates suggest that X-ray irradiation …
The young hard active Sun: soft X-ray irradiation of tryptophan in water solutions
AbstractThe X-ray emission of the young Sun was much harder and intense than today and might have played a significant role in the evolution of complex organics in protoplanetary environments. We investigate the effects of soft X-rays on tryptophan molecules in aqueous solutions at room temperature. As results of the irradiation experiments we detect several light species indicative of fragmentation, together with large molecular structures such as tryptophan dipeptide and tripeptide. Complexification is more evident in H2O solution than in D2O, probably due to isotopic effects. The abundances of peptides depend on the irradiation dose and decrease with increasing energy deposition. Radical…