0000000000424339
AUTHOR
Alessandro Braghieri
A Compact Solid State Detector for Small Angle Particle Tracking
MIDAS (MIcrostrip Detector Array System) is a compact silicon tracking telescope for charged particles emitted at small angles in intermediate energy photonuclear reactions. It was realized to increase the angular acceptance of the DAPHNE detector and used in an experimental program to check the Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron, MAMI. MIDAS provides a trigger for charged hadrons, p/pi identification and particle tracking in the region 7 deg < theta < 16 deg. In this paper we present the main characteristics of MIDAS and its measured performances.
Total photoabsorption cross sections forH1,H2, andHe3from 200 to 800 MeV
The total photoabsorption cross sections for $^{1}\mathrm{H}$, $^{2}\mathrm{H}$, and $^{3}\mathrm{He}$ have been measured for incident photon energies ranging from 200 to 800 MeV. The $^{3}\mathrm{He}$ data are the first for this nucleus. By using the large acceptance detector DAPHNE in conjunction with the tagged photon beam facility of the MAMI accelerator in Mainz, cross sections of high precision have been obtained. The results show clearly the changes in the nucleon resonances in going from $^{1}\mathrm{H}$ to $^{3}\mathrm{He}$. In particular, for the ${\mathit{D}}_{13}$ region the behavior for $^{3}\mathrm{He}$ is intermediate between that for $^{1}\mathrm{H}$, $^{2}\mathrm{H}$, and h…