0000000000424417

AUTHOR

Lynette M. Sholl

showing 3 related works from this author

The 2021 WHO Classification of Tumors of the Thymus and Mediastinum: What Is New in Thymic Epithelial, Germ Cell, and Mesenchymal Tumors?

2022

Abstract This overview of the fifth edition of the WHO classification of thymic epithelial tumors (including thymomas, thymic carcinomas, and thymic neuroendocrine tumors [NETs]), mediastinal germ cell tumors, and mesenchymal neoplasms aims to (1) list established and new tumor entities and subtypes and (2) focus on diagnostic, molecular, and conceptual advances since publication of the fourth edition in 2015. Diagnostic advances are best exemplified by the immunohistochemical characterization of adenocarcinomas and the recognition of genetic translocations in metaplastic thymomas, rare B2 and B3 thymomas, and hyalinizing clear cell carcinomas. Advancements at the molecular and tumor biolog…

Pulmonary and Respiratory MedicinePathologymedicine.medical_specialtyLung NeoplasmsThymomaThymomaAdenocarcinomaNeuroendocrine tumorsWorld Health OrganizationThymic carcinoma03 medical and health sciences0302 clinical medicineGerm cell tumormedicineHumansGerm cell tumor; NET G3; Thymic carcinoma; Thymic neuroendocrine tumor; Thymoma; WHO classificationThymic carcinoma030304 developmental biologyWHO classification0303 health sciencesbusiness.industryMesenchymal stem cellMediastinumMediastinumThymus Neoplasmsmedicine.disease3. Good healthThymic neuroendocrine tumorGerm Cellsmedicine.anatomical_structureOncology030220 oncology & carcinogenesisGerm cell tumorsNET G3businessClear cellGerm cellJournal of Thoracic Oncology
researchProduct

Activation of the PD-1 Pathway Contributes to Immune Escape in EGFR-Driven Lung Tumors

2013

Abstract The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of m…

Lung NeoplasmsT-LymphocytesT cellProgrammed Cell Death 1 ReceptorMice TransgenicLymphocyte ActivationB7-H1 AntigenArticleCell LineProinflammatory cytokineMiceCarcinoma Non-Small-Cell LungTumor MicroenvironmentmedicineAnimalsHumansCytotoxic T cellEpidermal growth factor receptorLung cancerEGFR inhibitorsTumor microenvironmentbiologyOncogenesmedicine.diseaseErbB ReceptorsGene Expression Regulation NeoplasticMice Inbred C57BLmedicine.anatomical_structureOncologyTumor EscapeImmunologyCancer researchbiology.proteinCytokinesTumor EscapeSignal TransductionCancer Discovery
researchProduct

Abstract B290: Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors.

2013

Abstract The recent clinical success of therapeutic blockade of the immune checkpoint Programmed Death (PD)-1 in advanced lung cancer patients suggests that mechanisms of immune escape may contribute to lung tumor pathogenesis. We identified a correlation between Epidermal Growth Factor Receptor (EGFR) pathway activation and a gene signature indicative of immunosuppression manifested by upregulation of PD-1, PD-L1, cytotoxic T lymphocyte antigen-4 (CTLA-4) and multiple tumor-promoting inflammatory cytokines. Accordingly, we identified a decrease in the number of cytotoxic T cells and an increase in markers of T cell exhaustion in genetically engineered mouse models (GEMMs) of EGFR-driven lu…

Cancer ResearchTumor microenvironmentbiologyCell growthT cellCancermedicine.diseaseImmune checkpointmedicine.anatomical_structureOncologyImmunologybiology.proteinmedicineCytotoxic T cellEpidermal growth factor receptorLung cancerMolecular Cancer Therapeutics
researchProduct