Peroxisomal and mitochondrial status of two murine oligodendrocytic cell lines (158N, 158JP): potential models for the study of peroxisomal disorders associated with dysmyelination processes.
International audience; In some neurodegenerative disorders (leukodystrophies) characterized by myelin alterations, the defect of peroxisomal functions on myelin-producing cells (oligodendrocytes) are poorly understood. The development of in vitro models is fundamental to understanding the physiopathogenesis of these diseases. We characterized two immortalized murine oligodendrocyte cell lines: a normal (158N) and a jimpy (158JP) cell line mutated for the proteolipid protein PLP/DM20. Fluorescence microscopy, flow cytometry, and western blotting analysis allow to identify major myelin proteins (PLP colocalizing with mitochondria; myelin basic protein), oligodendrocyte (CNPase and myelin oli…
Incidence of Abcd1 level on the induction of cell death and organelle dysfunctions triggered by very long chain fatty acids and TNF-alpha on oligodendrocytes and astrocytes
X-linked adrenoleukodystrophy (X-ALD) is characterized by ABCD1 deficiency. This disease is associated with elevated concentrations of very long chain fatty acids (C24:0 and C26:0) in the plasma and tissues of patients. Under its severe form, brain demyelination and inflammation are observed. Therefore, we determined the effects of C24:0 and C26:0 on glial cells:oligodendrocytes, which synthesize myelin, and astrocytes, which participate in immune response. So, 158N murine oligodendrocytes, rat C6 glioma cells, rat primary cultures of neuronal-glial cells, and of oligodendrocytes were treated for various periods of time in the absence or presence of C24:0 and C26:0 used at plasmatic concent…
LXR antagonists induce ABCD2 expression
X-linked adrenoleukodystrophy (X-ALD) is a rare neurodegenerative disorder characterized by the accumulation of very-long-chain fatty acids resulting from a beta-oxidation defect. Oxidative stress and inflammation are also key components of the pathogenesis. X-ALD is caused by mutations in the ABCDI gene, which encodes for a peroxisomal half ABC transporter predicted to participate in the entry of VLCFA-CoA into the peroxisome, the unique site of their beta-oxidation. Two homologous peroxisomal ABC transporters, ABCD2 and ABCD3 have been proven to compensate for ABCD1 deficiency when overexpressed. Pharmacological induction of these target genes could therefore represent an alternative ther…