Virtual Combinatorial Syntheses and Computational Screening of New Potential Anti-Herpes Compounds
The activity of new anti-HSV-1 chemical structures, designed by virtual combinatorial chemical synthesis and selected by a computational screening, is determined by an in vitro assay. A virtual library of phenol esters and anilides was formed from two databases of building blocks: one with carbonyl fragments and the other containing both substituted phenoxy and phenylamino fragments. The library of virtually assembled compounds was computationally screened, and those compounds which were selected by our mathematical model as active ones were finally synthesized and tested. Our antiviral activity model is a "tandem" of four linear functions of topological graph-theoretical descriptors. A giv…