Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices.
To combine the optical properties of CdSe@ZnS quantum dots (QDs) with the electrical properties of semiconducting polymers, we prepared QD/polymer hybrids by grafting a block copolymer (BCP) containing thiol-anchoring moieties (poly(para-methyl triphenylamine-b-cysteamine acrylamide)) onto the surfaces of QDs through the ligand exchange procedure. The prepared QD/polymer hybrids possess improved processability such as enhanced solubility in various organic solvents as well as the film formation properties along with the improved colloidal stability derived from the grafted polymer shells. We also demonstrated light-emitting diodes based on QD/polymer hybrids, exhibiting the improved device …
Characterization of quantum dot/conducting polymer hybrid films and their application to light-emitting diodes.
Quantum dot/conducting polymer hybrid films are used to prepare light-emitting diodes (LEDs). The hybrid films (CdSe@ZnS quantum dots excellently dispersed in a conducting polymer matrix, see figure) are readily prepared by various solution-based processes and are also easily micropatterned. The LEDs exhibit a turn-on voltage of 4 V, an external quantum efficiency greater than 1.5%, and almost pure-green quantum-dot electroluminescence.
Origin of enhanced efficiency and stability in diblock copolymer-grafted Cd-free quantum dot-based light-emitting diodes
The efficiency and operational lifetime of quantum dot (QD) based light-emitting diodes (QLEDs) are essentially affected by the electron–hole charge balance. Although various methods have been reported to improve the charge balance, these methods cause issues at the same time, such as increasing a driving voltage and complicating a device structure. In this work, we introduce hybrid InP/ZnSeS/ZnS QDs, in which the oleic acid ligands are substituted with semiconducting diblock copolymer units possessing hole-transporting carbazole groups, to facilitate hole injection and to reduce electron leakage. As a result, the efficiency and the operational lifetime were improved by 1.4-fold and 4-fold,…
Reduced efficiency roll-off in light-emitting diodes enabled by quantum dot–conducting polymer nanohybrids
We demonstrate QLEDs implementing wider active layers (50 nm) based on QD–conducting polymer nanohybrids, which exhibit a stable operational device performance across a wide range of current densities and brightness. A comparative study reveals that the significant suppression of efficiency roll-off in the high current density regime is primarily attributed to a sufficient charge carrier distribution over the wider active layer and improved charge carrier balance within QDs enabled by the hybridization of QDs with conducting polymers. Utilization of this finding in future studies should greatly facilitate the development of high performance, stable QLEDs at high current density or luminance…