0000000000424928
AUTHOR
V. B. Matveev
Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation
Abstract. We construct a multi-parametric family of quasi-rational solutions to the focusing NLS equation, presenting a profile of multiple rogue waves. These solutions have also been used by us to construct a large family of smooth, real localized rational solutions of the KP-I equation quite different from the multi-lumps solutions first constructed in Bordag et al. (1977). The physical relevance of both equations is very large. From the point of view of geosciences,the focusing NLS equation is relevant to the description of surface waves in deep water, and the KP-I equation occurs in the description of capillary gravitational waves on a liquid surface, but also when one considers magneto…
FUNCTIONAL-DIFFERENCE DEFORMATIONS OF DARBOUX-P ÖSHL-TELLER POTENTIALS
Multi-rogue waves solutions: from the NLS to the KP-I equation
Our discovery of multi-rogue wave (MRW) solutions in 2010 completely changed the viewpoint on the links between the theory of rogue waves and integrable systems, and helped explain many phenomena which were never understood before. It is enough to mention the famous Three Sister waves observed in oceans, the creation of a regular approach to studying higher Peregrine breathers, and the new understanding of 2 + 1 dimensional rogue waves via the NLS-KP correspondence. This article continues the study of the MRW solutions of the NLS equation and their links with the KP-I equation started in a previous series of articles (Dubard et al 2010 Eur. Phys. J. 185 247–58, Dubard and Matveev 2011 Natur…
Wronskian and Casorati determinant representations for Darboux–Pöschl–Teller potentials and their difference extensions
We consider some special reductions of generic Darboux?Crum dressing formulae and of their difference versions. As a matter of fact, we obtain some new formulae for Darboux?P?schl?Teller (DPT) potentials by means of Wronskian determinants. For their difference deformations (called DDPT-I and DDPT-II potentials) and the related eigenfunctions, we obtain new formulae described by the ratios of Casorati determinants given by the functional difference generalization of the Darboux?Crum dressing formula.
30 years of finite-gap integration theory
The method of finite-gap integration was created to solve the periodic KdV initial problem. Its development during last 30 years, combining the spectral theory of differential and difference operators with periodic coefficients, the algebraic geometry of compact Riemann surfaces and their Jacobians, the Riemann theta functions and inverse problems, had a strong impact on the evolution of modern mathematics and theoretical physics. This article explains some of the principal historical points in the creation of this method during the period 1973–1976, and briefly comments on its evolution during the last 30 years.
Wronskian Addition Formula and Darboux-Pöschl-Teller Potentials
For the famous Darboux-Pöschl-Teller equation, we present new wronskian representation both for the potential and the related eigenfunctions. The simplest application of this new formula is the explicit description of dynamics of the DPT potentials and the action of the KdV hierarchy. The key point of the proof is some evaluation formulas for special wronskian determinant.
Trivial S-Matrices, Wigner-Von Neumann Resonances and Positon Solutions of the Integrable Nonlinear Evolution Equations
It is well known that the scattering matrix is different from the unit matrix in the case of 1-dimensional Schrodinger operator with smooth rapidly decreasing nonzero potential. This no more true in the case of the slowly decreasing and oscillating potentials for which the absence of scattering is accompanied by the occurrence of the Wigner-von Neumann resonances embedded in the positive absolutely continuous spectrum. Taken as initial conditions in the KdV like integrable partial differential equations these potentials generate interesting family of explicit solutions. Below we will call them positon or multipositon solutions. The interaction of an arbitrary finite number of positons and s…