0000000000425236
AUTHOR
J. Salvador Sánchez
One-Sided Prototype Selection on Class Imbalanced Dissimilarity Matrices
In the dissimilarity representation paradigm, several prototype selection methods have been used to cope with the topic of how to select a small representation set for generating a low-dimensional dissimilarity space. In addition, these methods have also been used to reduce the size of the dissimilarity matrix. However, these approaches assume a relatively balanced class distribution, which is grossly violated in many real-life problems. Often, the ratios of prior probabilities between classes are extremely skewed. In this paper, we study the use of renowned prototype selection methods adapted to the case of learning from an imbalanced dissimilarity matrix. More specifically, we propose the…