showing 2 related works from this author
Statistics of residence time for Lévy flights in unstable parabolic potentials
2020
We analyze the residence time problem for an arbitrary Markovian process describing nonlinear systems without a steady state. We obtain exact analytical results for the statistical characteristics of the residence time. For diffusion in a fully unstable potential profile in the presence of Lévy noise we get the conditional probability density of the particle position and the average residence time. The noise-enhanced stability phenomenon is observed in the system investigated. Results from numerical simulations are in very good agreement with analytical ones.
Spectral characteristics of steady-state Lévy flights in confinement potential profiles
2016
The steady-state correlation characteristics of superdiffusion in the form of Levy flights in one-dimensional confinement potential profiles are investigated both theoretically and numerically. Specifically, for Cauchy stable noise we calculate the steady-state probability density function for an infinitely deep rectangular potential well and for a symmetric steep potential well of the type U(x)∞x2m. For these potential profiles and arbitrary Levy index α, we obtain the asymptotic expression of the spectral power density.