0000000000425287
AUTHOR
L. Pirovano
Determination of the strange-quark mass from QCD pseudoscalar sum rules
A new determination of the strange-quark mass is discussed, based on the two-point function involving the axial-vector current divergences. This Green function is known in perturbative QCD up to order O(alpha_s^3), and up to dimension-six in the non-perturbative domain. The hadronic spectral function is parametrized in terms of the kaon pole, followed by its two radial excitations, and normalized at threshold according to conventional chiral-symmetry. The result of a Laplace transform QCD sum rule analysis of this two-point function is: m_s(1 GeV^2) = 155 pm 25 MeV.
The strange-quark mass from QCD sum rules in the pseudoscalar channel
QCD Laplace transform sum rules, involving the axial-vector current divergences, are used in order to determine the strange quark mass. The two-point function is known in QCD up to four loops in perturbation theory, and up to dimension-six in the non-perturbative sector. The hadronic spectral function is reconstructed using threshold normalization from chiral symmetry, together with experimental data for the two radial excitations of the kaon. The result for the running strange quark mass, in the $\bar{MS}$ scheme at a scale of 1 ${GeV}^{2}$ is: ${\bar m}_{s}(1 GeV^{2}) = 155 \pm 25 {MeV}$.