0000000000425361
AUTHOR
Ewold Verhagen
Quadrature-Averaged Homodyne Detection for Estimating Cavity Parameters
Balanced homodyne interferometry is a well-known detection technique that allows for sensitive characterization of light fields. Conventionally a homodyne interferometer is operated by locking the relative phase of a reference beam to the signal beam by means of an active feedback loop. A less often used method is to perform a slow continuous modulation of the reference beam arm length that corresponds to averaging all relative phases during the measurement. Here we show theoretically and experimentally that this quadrature averaging can be advantageous in estimating the parameters of a resonant optical cavity. We demonstrate that the averaging turns the transduction function, from cavity f…
State Preparation and Tomography of a Nanomechanical Resonator with Fast Light Pulses
Pulsed optomechanical measurements enable squeezing, non-classical state creation and backaction-free sensing. We demonstrate pulsed measurement of a cryogenic nanomechanical resonator with record precision close to the quantum regime. We use these to prepare thermally squeezed and purified conditional mechanical states, and to perform full state tomography. These demonstrations exploit large photon-phonon coupling in a nanophotonic cavity to reach a single-pulse imprecision of 9 times the mechanical zero-point amplitude $x_\mathrm{zpf}$. We study the effect of other mechanical modes which limit the conditional state width to 58 $x_\mathrm{zpf}$, and show how decoherence causes the state to…
Roadmap on quantum nanotechnologies
Quantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the nanoscale, and experiments at the single particle level have become commonplace. This has opened wide new avenues for exploring and harnessing quantum mechanical effects in condensed matter. These quantum phenomena, in turn, have the potential to revolutionize the way we communicate, compute and probe the nanoscale world. Here, we review developments in key areas of quantum research in light of the nanotechnologies that enable them, with a …