0000000000428287

AUTHOR

Christoph Muehlmann

0000-0001-7330-8434

showing 4 related works from this author

TBSSvis: Visual Analytics for Temporal Blind Source Separation

2020

Temporal Blind Source Separation (TBSS) is used to obtain the true underlying processes from noisy temporal multivariate data, such as electrocardiograms. TBSS has similarities to Principal Component Analysis (PCA) as it separates the input data into univariate components and is applicable to suitable datasets from various domains, such as medicine, finance, or civil engineering. Despite TBSS’s broad applicability, the involved tasks are not well supported in current tools, which offer only text-based interactions and single static images. Analysts are limited in analyzing and comparing obtained results, which consist of diverse data such as matrices and sets of time series. Additionally, p…

Human-Computer InteractionFOS: Computer and information sciencesparameter space explorationsignaalinkäsittelyaikasarjatblind source separationComputer Science - Human-Computer Interactionensemble visualizationvisual analyticsComputer Graphics and Computer-Aided DesignSoftwareHuman-Computer Interaction (cs.HC)aikasarja-analyysi
researchProduct

Blind source separation for non-stationary random fields

2022

Regional data analysis is concerned with the analysis and modeling of measurements that are spatially separated by specifically accounting for typical features of such data. Namely, measurements in close proximity tend to be more similar than the ones further separated. This might hold also true for cross-dependencies when multivariate spatial data is considered. Often, scientists are interested in linear transformations of such data which are easy to interpret and might be used as dimension reduction. Recently, for that purpose spatial blind source separation (SBSS) was introduced which assumes that the observed data are formed by a linear mixture of uncorrelated, weakly stationary random …

Statistics and ProbabilityFOS: Computer and information scienceslinear latent variable modelpaikkatietoanalyysiManagement Monitoring Policy and Law010502 geochemistry & geophysics01 natural scienceslineaariset mallitspatial statisticsMethodology (stat.ME)010104 statistics & probabilitymonimuuttujamenetelmät0101 mathematicsComputers in Earth SciencesStatistics - Methodology0105 earth and related environmental sciences
researchProduct

Test of the Latent Dimension of a Spatial Blind Source Separation Model

2024

We assume a spatial blind source separation model in which the observed multivariate spatial data is a linear mixture of latent spatially uncorrelated random fields containing a number of pure white noise components. We propose a test on the number of white noise components and obtain the asymptotic distribution of its statistic for a general domain. We also demonstrate how computations can be facilitated in the case of gridded observation locations. Based on this test, we obtain a consistent estimator of the true dimension. Simulation studies and an environmental application in the Supplemental Material demonstrate that our test is at least comparable to and often outperforms bootstrap-bas…

Statistics and Probabilitymonimuuttujamenetelmätsignaalinkäsittelykernel functionFOS: Mathematicsspatial bootstrapMathematics - Statistics Theorymultivariate spatial dataStatistics Theory (math.ST)paikkatietoanalyysiStatistics Probability and Uncertaintyasymptotic distributionsignal number
researchProduct

Blind recovery of sources for multivariate space-time random fields

2022

AbstractWith advances in modern worlds technology, huge datasets that show dependencies in space as well as in time occur frequently in practice. As an example, several monitoring stations at different geographical locations track hourly concentration measurements of a number of air pollutants for several years. Such a dataset contains thousands of multivariate observations, thus, proper statistical analysis needs to account for dependencies in space and time between and among the different monitored variables. To simplify the consequent multivariate spatio-temporal statistical analysis it might be of interest to detect linear transformations of the original observations that result in stra…

Environmental EngineeringaikasarjatmonimuuttujamenetelmätsignaalinkäsittelypaikkatiedotEnvironmental ChemistrypaikkatietoanalyysiSafety Risk Reliability and QualitygeostatistiikkaGeneral Environmental ScienceWater Science and Technologyaikasarja-analyysi
researchProduct