0000000000428437

AUTHOR

Jörg Ruppert

Low Mass Dimuons Produced in Relativistic Nuclear Collisions

The NA60 experiment has measured low-mass muon pair production in In-In collisions at 158 A GeV with unprecedented precision. We show that this data is reproduced very well by a dynamical model with parameters scaled from fits to measurements of hadronic transverse mass spectra and Hanbury-Brown and Twiss correlations in Pb-Pb and Pb-Au collisions at the same energy. The data is consistent with in-medium properties of $\rho$ and $\omega$-mesons at finite temperature and density as deduced from empirical forward-scattering amplitudes. Inclusion of the vacuum decay of the $\rho$-meson after freeze-out is necessary for an understanding of the mass and transverse momentum spectrum of dimuons wi…

research product

Systematic Comparison of Jet Energy-Loss Schemes in a realistic hydrodynamic medium

We perform a systematic comparison of three different jet energy-loss approaches. These include the Armesto-Salgado-Wiedemann scheme based on the approach of Baier-Dokshitzer-Mueller-Peigne-Schiff and Zakharov (BDMPS-Z/ASW), the Higher Twist approach (HT) and a scheme based on the approach of Arnold-Moore-Yaffe (AMY). In this comparison, an identical medium evolution will be utilized for all three approaches: not only does this entail the use of the same realistic three-dimensional relativistic fluid dynamics (RFD) simulation, but also includes the use of identical initial parton-distribution functions and final fragmentation functions. We are, thus, in a unique position, not only to isolat…

research product

What to learn from dilepton transverse momentum spectra in heavy-ion collisions?

Recently the NA60 collaboration has presented high precision measurements of dimuon spectra double differential in invariant mass $M$ and transverse pair momentum $p_T$ in In-In collisions at $158 {\rm AGeV}$. While the $M$-dependence is important for an understanding of in-medium changes of light vector mesons and is $p_T$ integrated insensitive to collective expansion, the $p_T$-dependence arises from an interplay between emission temperature and collective transverse flow. This fact can be exploited to derive constraints on the evolution model and in particular on the contributions of different phases of the evolution to dimuon radiation into a given $M$ window. We present arguments that…

research product

The rapidity structure of Mach cones and other large angle correlations in heavy-ion collisions

The pattern of angular correlations of hadrons with a (semi-)hard trigger hadron in heavy-ion collisions has attracted considerable interest. In particular, unexpected large angle structures on the away side (opposite to the trigger) have been found. Several explanations have been brought forward, among them Mach shockwaves and Cherenkov radiation. Most of these scenarios are characterized by radial symmetry around the parton axis, thus angular correlations also determine the rapidity dependence of the correlation. If the observed correlations are remnants of an away side parton after interaction with the medium created in the collision, pQCD allows to calculate the distribution $P(y)$ of t…

research product

Prospects of Medium Tomography using 2-,3- and 4-Particle Correlations for a (semi-)hard Trigger

Hard partons propagating through hot and dense matter lose energy, leading to the observed depletion of hard hadron spectra in nucleus nucleus collision as compared to scaled proton proton collisions. This lost energy has to be redistributed in the medium due to the conservation of energy, which is manifest in the p_T dependence of the angular correlation pattern of hadrons associate with a (semi-) hard trigger. While at low p_T a splitting of a broad peak is observed, at high p_T the structure shows vacuum width, albeit with reduced yield. This sugests a transfer of energy from hard partons to a collectively recoiling medium. We present a systematic study of these phenomena using a realist…

research product