0000000000428509

AUTHOR

Haley Mcconkey

showing 4 related works from this author

Clinical Utility of a Unique Genome-Wide DNA Methylation Signature for KMT2A-Related Syndrome

2022

Wiedemann–Steiner syndrome (WDSTS) is a Mendelian syndromic intellectual disability (ID) condition associated with hypertrichosis cubiti, short stature, and characteristic facies caused by pathogenic variants in the KMT2A gene. Clinical features can be inconclusive in mild and unusual WDSTS presentations with variable ID (mild to severe), facies (typical or not) and other associated malformations (bone, cerebral, renal, cardiac and ophthalmological anomalies). Interpretation and classification of rare KMT2A variants can be challenging. A genome-wide DNA methylation episignature for KMT2A-related syndrome could allow functional classification of variants and provide insights into the pathoph…

Wiedemann–Steiner syndromeQH301-705.5Intellectual disability[SDV.BC]Life Sciences [q-bio]/Cellular BiologyCatalysisInorganic ChemistryKMT2A geneNeurodevelopmental disorderGrowth DisorderAbnormalities Multiple[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Biology (General)Physical and Theoretical ChemistryEpisignatureQD1-999[SDV.BC] Life Sciences [q-bio]/Cellular BiologyMolecular BiologySpectroscopyDNA methylationOrganic ChemistryNeurodevelopmental disordersCraniofacial AbnormalitieEpigeneticHypertrichosiGeneral MedicineFacieComputer Science Applications<i>KMT2A</i> geneChemistryepigenetics; DNA methylation; episignature; Wiedemann–Steiner syndrome; <i>KMT2A</i> gene; intellectual disability; neurodevelopmental disordersPhenotype[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]EpigeneticsHuman
researchProduct

DNA methylation episignature testing improves molecular diagnosis of Mendelian chromatinopathies

2021

Abstract Purpose Chromatinopathies include more than 50 disorders caused by disease-causing variants of various components of chromatin structure and function. Many of these disorders exhibit unique genome-wide DNA methylation profiles, known as episignatures. In this study, the methylation profile of a large cohort of individuals with chromatinopathies was analyzed for episignature detection. Methods DNA methylation data was generated on extracted blood samples from 129 affected individuals with the Illumina Infinium EPIC arrays and analyzed using an established bioinformatic pipeline. Results The DNA methylation profiles matched and confirmed the sequence findings in both the discovery an…

Chromatinopathies; DNA methylation; EpigeneticsChromatinopathieBiologyEPICDNA sequencingsymbols.namesakemedicineHumansAbnormalities MultipleGenetics (clinical)Sequence (medicine)GeneticsChromatinopathies; DNA methylation; Epigenetics; DNA Methylation; Genome; Humans; Abnormalities Multiple; Hematologic Diseases; Vestibular DiseasesChromatinopathiesGenomeDNA methylationEpigeneticMethylationHematologic Diseasemedicine.diseaseHematologic DiseasesChromatinVestibular DiseasesDNA methylationMendelian inheritancesymbolsEpigeneticsAbnormalitiesKabuki syndromeMultipleHuman
researchProduct

Functional correlation of genome-wide DNA methylation profiles in genetic neurodevelopmental disorders

2022

An expanding range of genetic syndromes are characterized by genome-wide disruptions in DNA methylation profiles referred to as episignatures. Episignatures are distinct, highly sensitive and specific biomarkers that have recently been applied in clinical diagnosis of genetic syndromes. Episignatures are contained within the broader disorder-specific genome-wide DNA methylation changes which can share significant overlap amongst different conditions. In this study we performed functional genomic assessment and comparison of disorder-specific and overlapping genome-wide DNA methylation changes related to 65 genetic syndromes with previously described episignatures. We demonstrate evidence of…

DNA methylationclinical diagnostics.SyndromeDNA methylation clinical diagnostics episignatures neurodevelopmental syndromesneurodevelopmental syndromesEpigenesis GeneticNeurodevelopmental DisordersGeneticsHumansCpG IslandsDNA IntergenicepisignaturesEpisignatureGenetics (clinical)clinical diagnostics
researchProduct

SPEN haploinsufficiency causes a neurodevelopmental disorder overlapping proximal 1p36 deletion syndrome with an episignature of X chromosomes in fem…

2021

Contains fulltext : 231702.pdf (Publisher’s version ) (Closed access) Deletion 1p36 (del1p36) syndrome is the most common human disorder resulting from a terminal autosomal deletion. This condition is molecularly and clinically heterogeneous. Deletions involving two non-overlapping regions, known as the distal (telomeric) and proximal (centromeric) critical regions, are sufficient to cause the majority of the recurrent clinical features, although with different facial features and dysmorphisms. SPEN encodes a transcriptional repressor commonly deleted in proximal del1p36 syndrome and is located centromeric to the proximal 1p36 critical region. Here, we used clinical data from 34 individuals…

0301 basic medicineSHARPMaleobesitygenotype-phenotype correlationsAutism Spectrum DisorderPROTEINChromosome DisordersHaploinsufficiencyRNA-Binding ProteinPHENOTYPE CORRELATIONS1p36; distal 1p36 deletion syndrome; DNA methylome analysis; episignature; genotype-phenotype correlations; neurodevelopmental disorder; obesity; proximal 1p36 deletion syndrome; SPEN; X chromosome; Adolescent; Autism Spectrum Disorder; Child; Child Preschool; Chromosome Deletion; Chromosome Disorders; Chromosomes Human Pair 1; Chromosomes Human X; DNA Methylation; DNA-Binding Proteins; Epigenesis Genetic; Female; Haploinsufficiency; Humans; Intellectual Disability; Male; Neurodevelopmental Disorders; Phenotype; RNA-Binding Proteins; Young AdultEpigenesis GeneticX chromosome0302 clinical medicineNeurodevelopmental disorderNeurodevelopmental DisorderIntellectual disabilityMOLECULAR CHARACTERIZATIONdistal 1p36 deletion syndromeChildGenetics (clinical)X chromosomeGeneticsXDNA methylome analysiRNA-Binding ProteinsSPLIT-ENDSHypotoniaDNA-Binding ProteinsPhenotypeAutism spectrum disorderChromosomes Human Pair 1Child PreschoolDNA methylome analysisMONOSOMY 1P36Pair 1SPENFemalemedicine.symptomChromosome DeletionHaploinsufficiencyRare cancers Radboud Institute for Health Sciences [Radboudumc 9]HumanAdolescentDNA-Binding ProteinBiologygenotype-phenotype correlationChromosomes03 medical and health sciencesYoung AdultGeneticSDG 3 - Good Health and Well-beingReportIntellectual DisabilityREVEALSGeneticsmedicineHumansEpigeneticsPreschoolChromosomes Human XNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]1p361p36 deletion syndromeIDENTIFICATIONMUTATIONSproximal 1p36 deletion syndromeDNA Methylationmedicine.diseaseneurodevelopmental disorderGENEepisignature030104 developmental biologyChromosome DisorderNeurodevelopmental Disorders030217 neurology & neurosurgeryEpigenesis
researchProduct