0000000000428672

AUTHOR

S. Baur

showing 12 related works from this author

A Search for IceCube Events in the Direction of ANITA Neutrino Candidates

2020

During the first three flights of the Antarctic Impulsive Transient Antenna (ANITA) experiment, the collaboration detected several neutrino candidates. Two of these candidate events were consistent with an ultra-high-energy up-going air shower and compatible with a tau neutrino interpretation. A third neutrino candidate event was detected in a search for Askaryan radiation in the Antarctic ice, although it is also consistent with the background expectation. The inferred emergence angle of the first two events is in tension with IceCube and ANITA limits on isotropic cosmogenic neutrino fluxes. Here, we test the hypothesis that these events are astrophysical in origin, possibly caused by a po…

010504 meteorology & atmospheric sciencesPoint sourceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesStandard ModelHigh Energy Physics - Phenomenology (hep-ph)Tau neutrino0103 physical sciencesTRACK RECONSTRUCTIONSource spectrum010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEIsotropyAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicshep-phHigh Energy Physics - PhenomenologyAir showerPhysics and Astronomy13. Climate actionSpace and Planetary ScienceNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEvent (particle physics)
researchProduct

IceCube search for neutrinos coincident with compact binary mergers from LIGO-Virgo's first gravitational-wave transient catalog

2020

Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsBayesian7. Clean energy01 natural sciencesNeutrino astronomy; High energy astrophysics; Gravitational waveslocalizationIceCubeIceCube Neutrino ObservatoryGravitational wavesparticle source [neutrino]0103 physical sciencesLIGO010303 astronomy & astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGravitational wavegravitational radiationAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsLIGOobservatorymessengerMassless particleVIRGONeutrino detector13. Climate actionSpace and Planetary ScienceNeutrino astronomycompact [binary]Physique des particules élémentairesddc:520High Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsLepton
researchProduct

A 3-Year Sample of Almost 1,600 Elves Recorded Above South America by the Pierre Auger Cosmic-Ray Observatory

2020

The time and location of the 1,598 verified and reconstructed elves, used for the analysis showcased in this paper, are publicly available on the website of the Pierre Auger Observatory (https://www.auger.org/ index.php/science/data). We wish to thank the World Wide Lightning Location Network (http://wwlln.net), a collaboration among over 50 universities and institutions, for providing the lightning location data used in this paper. We acknowledge Robert Marshall for providing one of the most advanced elve simulations to the public, a key tool in understanding the elves observed by the Pierre Auger Observatory. The successful installation, commissioning, and operation of the Pierre Auger Ob…

010504 meteorology & atmospheric sciencesAstronomyField of view010502 geochemistry & geophysics01 natural sciences7. Clean energyAugerlcsh:QB1-991ObservatoryultravioletStormddc:550UHE Cosmic Raystime resolutionCosmic-ray observatoryPhysicslcsh:QE1-996.5astro-ph.GeologyAugerwidth [beam]IonosphereField of viewGeologylcsh:AstronomyUHE [cosmic radiation]Environmental Science (miscellaneous)horizonLightningddc:530High Energy PhysicsIonosphereCosmic-ray observatory0105 earth and related environmental sciencesfluorescence [detector]backgroundFísicaAstronomyStormsensitivityLightningopticslcsh:GeologyElves UV fluorescence detectorsThunderstorm13. Climate actionExperimental High Energy PhysicsnetworkThunderstormGeneral Earth and Planetary SciencesElvesObservatory
researchProduct

Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory

2019

Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming τ neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in ∼ 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an Eν -2 spectrum in the energy range 1.0 × 1017 eV -2.5 × 1019 eV is E2 dNν/dEν < 4.4 × 10-9 GeV cm-2 s-1 sr-1, placing str…

cosmological neutrinosAstronomyFluxAstrophysics01 natural sciences7. Clean energycosmic ray experiments; cosmological neutrinos; neutrino astronomy; ultra high energy cosmic rayssurface [detector]Ultra-high-energy cosmic rayPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)cosmological neutrinoSettore FIS/01 - Fisica SperimentaleDETETORESneutrino: UHEUHE [neutrino]Augerobservatorytrajectoryneutrino: flavorProduction (computer science)NeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencescosmic ray experimentCosmic rayultra high energy cosmic raysneutrino: productionneutrino astronomyproduction [neutrino]TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesddc:530model [neutrino]High Energy Physicscosmic radiation: UHEZenithAstrophysiqueneutrino: modelPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsdetector: surfaceHigh Energy Physics::Phenomenologyflavor [neutrino]Astronomy and AstrophysicsAstronomiefluxExperimental High Energy PhysicsatmosphereHigh Energy Physics::Experimentcosmic ray experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)
researchProduct

Large-scale Cosmic-Ray Anisotropies above 4 EeV Measured by the Pierre Auger Observatory

2018

We present a detailed study of the large-scale anisotropies of cosmic rays with energies above 4 EeV measured using the Pierre Auger Observatory. For the energy bins [4,8] EeV and $E\geq 8$ EeV, the most significant signal is a dipolar modulation in right ascension at energies above 8 EeV, as previously reported. In this paper we further scrutinize the highest-energy bin by splitting it into three energy ranges. We find that the amplitude of the dipole increases with energy above 4 EeV. The growth can be fitted with a power law with index $\beta=0.79\pm 0.19$. The directions of the dipoles are consistent with an extragalactic origin of these anisotropies at all the energies considered. Addi…

Astronomymagnetic fieldAstrophysicsAstrophysics01 natural sciencesAmplitudeastroparticle physics; cosmic raysAnisotropy010303 astronomy & astrophysicscosmic rayastroparticle physics cosmic raysRight ascensionHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HECOSMIC cancer databaseORIGINOBSERVATÓRIOSPhysicsSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsastroparticle physicAugerastroparticle physics; cosmic rays; Astronomy and Astrophysics; Space and Planetary ScienceobservatorymodulationAmplitudeastroparticle physicsCosmic cancer databaseAstrophysics - High Energy Astrophysical Phenomenalarge scale anysotropysplittingAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayContext (language use)cosmic radiation: anisotropycosmic rays0103 physical sciencesHigh Energy Physicscosmic radiation: UHEPierre auger observatoryPierre Auger Observatoryextragalactic origin010308 nuclear & particles physicsFísicaAstronomy and AstrophysicsContext (language use)Astronomy and AstrophysicCosmic rayDipoleSpace and Planetary ScienceExperimental High Energy PhysicsAnisotropyDipoleObservatoryAstroparticle physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Right ascensionlarge scale anysotropy extragalactic origindipole
researchProduct

Limits on point-like sources of ultra-high-energy neutrinos with the Pierre Auger Observatory

2019

With the Surface Detector array (SD) of the Pierre Auger Observatory we can detect neutrinos with energy between 1017 eV and 1020 eV from point-like sources across the sky, from close to the Southern Celestial Pole up to 60 in declination, with peak sensitivities at declinations around ∼-53 and ∼+55, and an unmatched sensitivity for arrival directions in the Northern hemisphere. A search has been performed for highly-inclined air showers induced by neutrinos of all flavours with no candidate events found in data taken between 1 Jan 2004 and 31 Aug 2018. Upper limits on the neutrino flux from point-like steady sources have been derived as a function of source declination. An unrivaled sensit…

cosmological neutrinosAstronomypoleFluxAstrophysics01 natural sciencesneutrino: fluxcosmic ray experiments; cosmological neutrinos; neutrino astronomy; ultra high energy cosmic raysmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)AIR-SHOWERSastro-ph.HEcosmological neutrinoSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsCOSMIC-RAYSneutrino: UHEAugerobservatoryNEUTRINOSNeutrinoAstrophysics - High Energy Astrophysical Phenomenaairmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical Phenomenacosmic ray experimentFOS: Physical sciencesultra high energy cosmic raysDeclinationneutrino astronomyCelestial pole0103 physical sciencesflux: upper limitHigh Energy PhysicsDETECTORZenithAstrophysiquePierre Auger Observatoryflavorshowers: atmosphere010308 nuclear & particles physicsdetector: surfaceNorthern HemisphereAstronomy and AstrophysicsAstronomiesensitivitySkyExperimental High Energy PhysicsHigh Energy Physics::Experimentcosmic ray experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory

2018

With the Auger Engineering Radio Array (AERA) of the Pierre Auger Observatory, we have observed the radio emission from 561 extensive air showers with zenith angles between 60 and 84. In contrast to air showers with more vertical incidence, these inclined air showers illuminate large ground areas of several km2 with radio signals detectable in the 30 to 80 MHz band. A comparison of the measured radio-signal amplitudes with Monte Carlo simulations of a subset of 50 events for which we reconstruct the energy using the Auger surface detector shows agreement within the uncertainties of the current analysis. As expected for forward-beamed radio emission undergoing no significant absorption or sc…

Physics::Instrumentation and DetectorsAstronomyengineering01 natural sciencesultra high energy cosmic rayAugerHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)cosmic ray experiments; cosmic rays detectors; ultra high energy cosmic rays; Astronomy and Astrophysics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Cosmic ray experiments cosmic rays detectors ultra high energy cosmic rays Astronomy and Astrophysics.Absorption (electromagnetic radiation)Physicsradio waveSettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsDETETORESCOSMIC-RAYSAugerobservatoryAmplitudecosmic rays detectorsAstrophysics - Instrumentation and Methods for Astrophysicsnumerical calculations: Monte CarloairAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencescosmic ray experimentultra high energy cosmic rayscascade: electromagneticOptics0103 physical sciencesHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]cosmic rays detector010306 general physicscosmic ray experiments cosmic rays detectors ultra high energy cosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithAstrophysiquePierre Auger Observatoryshowers: atmosphere010308 nuclear & particles physicsbusiness.industryScatteringhep-exdetector: surfacescatteringAstronomy and AstrophysicsAstronomieAir showerExperimental High Energy PhysicsARRAYHigh Energy Physics::Experimentcosmic ray experimentscosmic ray experiments; cosmic rays detectors; ultra high energy cosmic raysEMISSIONbusinessabsorptionastro-ph.IM
researchProduct

Characteristics of the diffuse astrophysical electron and Tau neutrino flux with six years of IceCube high energy cascade data

2020

We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010-2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (∼90%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16 TeV to 2.6 PeV, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be γ=2.53±0.07 and a flux normalization for each neutrino flavor of φastro=1.66-0.27+0.25 at E0=100 TeV, in agreement with IceCube's complementary muon neutrino results and wit…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyElectronpower spectrumflux [electron]energy [particle]01 natural sciencesIceCubeNuclear physics5/3Tau neutrinomuon0103 physical scienceslow [energy]Muon neutrinoddc:530010303 astronomy & astrophysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMSpectral indexMuon010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyflavor [neutrino]RAYSflux [neutrino]accelerationshowersoscillationPhysics and Astronomy13. Climate actionEnergy cascadePhysique des particules élémentairesastro-ph.COhigh [energy]cascade [energy]High Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space TelescopeAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU

2020

Physical review / D 101(3), 032006 (1-19) (2020). doi:10.1103/PhysRevD.101.032006

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsantineutrino/e: energy spectrumJoint analysishiukkasfysiikka7. Clean energy01 natural sciencesString (physics)PINGUHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)neutrino: atmosphereSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics Experimentsneutrino: massphysics.ins-detPhysicsJUNOPhysicsneutriinotoscillation [neutrino]Instrumentation and Detectors (physics.ins-det)massa (fysiikka)atmosphere [neutrino]tensionneutrino: nuclear reactormass difference [neutrino]ddc:UpgradePhysique des particules élémentairesnuclear reactor [neutrino]proposed experimentNeutrinoperformanceParticle physicsAstrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceFOS: Physical sciencesddc:500.25300103 physical sciencesEnergy spectrumIceCube: upgradeOSCILLATIONSddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationenergy spectrum [antineutrino/e]hep-ex010308 nuclear & particles physicssensitivityPhysics and Astronomymass [neutrino]stringupgrade [IceCube]High Energy Physics::ExperimentReactor neutrinoneutrino: oscillationMATTER
researchProduct

Data-driven estimation of the invisible energy of cosmic ray showers with the Pierre Auger Observatory

2019

The determination of the primary energy of extensive air showers using the fluorescence detection technique requires an estimation of the energy carried away by particles that do not deposit all their energy in the atmosphere. This estimation is typically made using Monte Carlo simulations and thus depends on the assumed primary particle mass and on model predictions for neutrino and muon production. In this work we present a new method to obtain the invisible energy from events detected by the Pierre Auger Observatory. The method uses measurements of the muon number at ground level, and it allows us to significantly reduce the systematic uncertainties related to the mass composition and th…

Primary energyAstronomyAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodHadronFOS: Physical sciencesCosmic rayultra high energy cosmic rays01 natural sciencesNuclear physicscosmic rays0103 physical sciencesExperiments in gravityddc:530High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)DETECTORPierre Auger ObservatoryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsGénéralitésDETETORESMODEL13. Climate actioncosmic rays detectors ultra high energy cosmic raysExperimental High Energy Physicscosmic rays detectorsNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyEnergy (signal processing)Physical Review D
researchProduct

Vaccination trial with HPV16 L1E7 chimeric virus-like particles in women suffering from high grade cervical intraepithelial neoplasia (CIN 2/3).

2007

Persistent infection with human papillomaviruses (HPV) is a prerequisite for the development of cervical cancer. Vaccination with virus-like particles (VLP) has demonstrated efficacy in prophylaxis but lacks therapeutic potential. HPV16 L1E7 chimeric virus-like particles (CVLP) consist of a carboxy-terminally truncated HPV16L1 protein fused to the amino-terminal part of the HPV16 E7 protein and self-assemble by recombinant expression of the fusion protein. The CVLP are able to induce L1- and E7-specific cytotoxic T lymphocytes. We have performed a first clinical trial to gain information about the safety and to generate preliminary data on the therapeutic potential of the CVLP in humans. A …

AdultCancer ResearchTime FactorsOncogene Proteins FusionvirusesUterine Cervical NeoplasmsCervical intraepithelial neoplasiaCancer VaccinesDrug Administration ScheduleDouble-Blind MethodMedicineHumansPapillomavirus VaccinesAdverse effectAgedCervical cancerHuman papillomavirus 16biologybusiness.industryPapillomavirus Infectionsvirus diseasesOncogene Proteins ViralMiddle Agedmedicine.diseaseUterine Cervical Dysplasiafemale genital diseases and pregnancy complicationsVaccinationClinical trialTumor Virus InfectionsTreatment OutcomeOncologyImmunizationHigh Grade Cervical Intraepithelial NeoplasiaImmunologyDNA Viralbiology.proteinFemaleAntibodybusinessInternational journal of cancer
researchProduct

Measurement of the average shape of longitudinal profiles of cosmic-ray air showers at the Pierre Auger Observatory

2019

The profile of the longitudinal development of showers produced by ultra-high energy cosmic rays carries information related to the interaction properties of the primary particles with atmospheric nuclei. In this work, we present the first measurement of the average shower profile in traversed atmospheric depth at the Pierre Auger Observatory. The shapes of profiles are well reproduced by the Gaisser-Hillas parametrization within the range studied, for E>10 17.8 eV .A detailed analysis of the systematic uncertainties is performed using ten years of data and a full detector simulation. The average shape is quantified using two variables related to the width and asymmetry of the profile, and …

p: showersphoton: Cherenkovinteraction: modelAstronomyHadronpiastro-ph.HE; astro-ph.HE01 natural sciencesnitrogenironParametrization (atmospheric modeling)Monte Carlomedia_commonPhysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Range (particle radiation)photomultiplierSettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsDETETOREScosmic rays detectors; ultra high energy cosmic rays; Astronomy and AstrophysicsAugerobservatorycosmic rays detectorscosmic rays detectors; ultra high energy cosmic raysgeometricalAstrophysics - High Energy Astrophysical PhenomenaasymmetrylongitudinalCherenkov counter: waterairmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayheliumultra high energy cosmic raysnucleus: atmosphereAsymmetry0103 physical sciencesHigh Energy Physicscosmic radiation: UHEcosmic rays detectorFLUORESCENCEAstrophysiquePierre Auger Observatoryelectron positronshowers: atmosphere010308 nuclear & particles physicsbackgrounddetector: surfaceshowers: spatial distributionparametrizationAstronomy and AstrophysicsAstronomieComputational physics13. Climate actiongamma rayExperimental High Energy Physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)Journal of Cosmology and Astroparticle Physics
researchProduct