Mappings of finite distortion : boundary extensions in uniform domains
In this paper, we consider mappings on uniform domains with exponentially integrable distortion whose Jacobian determinants are integrable. We show that such mappings can be extended to the boundary and moreover these extensions are exponentially integrable with quantitative bounds. This extends previous results of Chang and Marshall on analytic functions, Poggi-Corradini and Rajala and Akkinen and Rajala on mappings of bounded and finite distortion.