0000000000429131

AUTHOR

Ketil Oppedal

Improving prostate whole gland segmentation in t2-weighted MRI with synthetically generated data

Whole gland (WG) segmentation of the prostate plays a crucial role in detection, staging and treatment planning of prostate cancer (PCa). Despite promise shown by deep learning (DL) methods, they rely on the availability of a considerable amount of annotated data. Augmentation techniques such as translation and rotation of images present an alternative to increase data availability. Nevertheless, the amount of information provided by the transformed data is limited due to the correlation between the generated data and the original. Based on the recent success of generative adversarial networks (GAN) in producing synthetic images for other domains as well as in the medical domain, we present…

research product

Deep 3D Convolution Neural Network for Alzheimer’s Detection

One of the most well-known and complex applications of artificial intelligence (AI) is Alzheimer’s detection, which lies in the field of medical imaging. The complexity in this task lies in the three-dimensional structure of the MRI scan images. In this paper, we propose to use 3D Convolutional Neural Networks (3D-CNN) for Alzheimer’s detection. 3D-CNNs have been a popular choice for this task. The novelty in our paper lies in the fact that we use a deeper 3D-CNN consisting of 10 layers. Also, with effectively training our model consisting of Batch Normalization layers that provide a regularizing effect, we don’t have to use any transfer learning. We also use the simple data augmentation te…

research product