0000000000429136
AUTHOR
S. C. Cheran
Comparative Study of Feature classification Methods for Mass Lesion Recognition in Digitized Mammograms
In this work a comparison of different classification methods for the identification of mass lesions in digitized mammograms is performed. These methods, used in order to develop Computer Aided Detection (CAD) systems, have been implemented in the framework of the MAGIC-5 Collaboration. The system for identification of mass lesions is based on a three-step procedure: a) preprocessing and segmentation, b) region of interest (ROI) searching, c) feature extraction and classification. It was tested on a very large mammographic database (3369 mammographic images from 967 patients). Each ROI is characterized by eight features extracted from a co-occurrence matrix containing spatial statistics inf…
A massive lesion detection algorithm in mammography
A new algorithm for massive lesion detection in mammography is presented. The algorithm consists in three main steps : 1) reduction of the dimension of the image to be processed through the identifi cation of regions of interest (rois) as candidates for massive lesions ; 2) characterization of the roi by means of suitable feature extraction ; 3) pattern classifi cation through supervised neural networks. Suspect regions are detected by searching for local maxima of the pixel grey level intensity. A ring of increasing radius, centered on a maximum, is considered until the mean intensity in the ring decreases to a defi ned fraction of the maximum. The rois thus obtained are described by avera…
Automated detection of lung nodules in low-dose computed tomography
A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector computed-tomography (CT) images has been developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, consisting in a 3D dot-enhancement filter for nodule detection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The database used in this study consists of 17 low…
A completely automated CAD system for mass detection in a large mammographic database
Mass localization plays a crucial role in computer-aided detection (CAD) systems for the classification of suspicious regions in mammograms. In this article we present a completely automated classification system for the detection of masses in digitized mammographic images. The tool system we discuss consists in three processing levels: (a) Image segmentation for the localization of regions of interest (ROIs). This step relies on an iterative dynamical threshold algorithm able to select iso-intensity closed contours around gray level maxima of the mammogram. (b) ROI characterization by means of textural features computed from the gray tone spatial dependence matrix (GTSDM), containing secon…
Dissimilarity Application in Digitized Mammographic Images Classification.
Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the traditional way of learning from examples of objects the classifiers are built in a feature space. However, an alternative ways can be found by constructing decision rules on dissimilarity (distance) representations. In such a recognition process a new object is described by its distances to (a subset of) the training samples. The use of the dissimilarities is especially of interest when features are difficult to obtain or when they have a little discrim…
Mammogram segmentation by contour searching and massive lesion classification with neural network
The mammography is the most effective procedure for an early diagnosis of the breast cancer. In this paper, an algorithm for detecting massive lesions in mammographic images will be presented. The database consists of 3762 digital images acquired in several hospitals belonging to the MAGIC-5 collaboration. A reduction of the surface under investigation is achieved, without loss of meaningful information, through segmentation of the whole image, by means of a ROI Hunter algorithm. In the following classification step, feature extraction plays a fundamental role: some features give geometrical information, other ones provide shape parameters. Once the features are computed for each ROI, they …