0000000000429139

AUTHOR

Piergiorgio Cerello

0000-0002-2443-5178

A massive lesion detection algorithm in mammography

A new algorithm for massive lesion detection in mammography is presented. The algorithm consists in three main steps : 1) reduction of the dimension of the image to be processed through the identifi cation of regions of interest (rois) as candidates for massive lesions ; 2) characterization of the roi by means of suitable feature extraction ; 3) pattern classifi cation through supervised neural networks. Suspect regions are detected by searching for local maxima of the pixel grey level intensity. A ring of increasing radius, centered on a maximum, is considered until the mean intensity in the ring decreases to a defi ned fraction of the maximum. The rois thus obtained are described by avera…

research product

GPCALMA, a mammographic CAD in a GRID connection

Purpose of this work is the development of an automatic system which could be useful for radiologists in the investigation of breast cancer. A breast neoplasia is often marked by the presence of microcalcifications and massive lesions in the mammogram: hence the need for tools able to recognize such lesions at an early stage. GPCALMA (Grid Platform Computer Assisted Library for MAmmography), a collaboration among italian physicists and radiologists, has built a large distributed database of digitized mammographic images (at this moment about 5500 images corresponding to 1650 patients). This collaboration has developed a CAD (Computer Aided Detection) system which, installed in an integrated…

research product

GPCALMA: An Italian mammographic database of digitized images for research

In this work the implementation of a database of digitized mammograms is described. The digitized images were collected since 1999 by a community of physicists in collaboration with radiologists in several Italian hospitals, as a first step in order to develop and implement a Computer Aided Detection (CAD) system. 3369 mammograms were collected from 967 patients; they were classified according to the type and the morphology of the lesions, the type of the breast tissue and the type of pathologies. A dedicated Graphical User Interface was developed for mammography visualization and processing, in order to support the medical diagnosis directly on a high-resolution screen. The database has be…

research product

The CALMA system: an artificial neural network method for detecting masses and microcalcifications in digitized mammograms

The CALMA (Computer Assisted Library for MAmmography) project is a five years plan developed in a physics research frame in collaboration between INFN (Istituto Nazionale di Fisica Nucleare) and many Italian hospitals. At present a large database of digitized mammographic images (more than 6000) was collected and a software based on neural network algorithms for the search of suspicious breast lesions was developed. Two tools are available: a microcalcification clusters hunter, based on supervised and unsupervised feedforward neural network, and a massive lesions searcher, based on a hibrid approach. Both the algorithms analyzed preprocessed digitized images by high frequency filters. Clini…

research product