0000000000429140

AUTHOR

G. Forni

A massive lesion detection algorithm in mammography

A new algorithm for massive lesion detection in mammography is presented. The algorithm consists in three main steps : 1) reduction of the dimension of the image to be processed through the identifi cation of regions of interest (rois) as candidates for massive lesions ; 2) characterization of the roi by means of suitable feature extraction ; 3) pattern classifi cation through supervised neural networks. Suspect regions are detected by searching for local maxima of the pixel grey level intensity. A ring of increasing radius, centered on a maximum, is considered until the mean intensity in the ring decreases to a defi ned fraction of the maximum. The rois thus obtained are described by avera…

research product

A completely automated CAD system for mass detection in a large mammographic database

Mass localization plays a crucial role in computer-aided detection (CAD) systems for the classification of suspicious regions in mammograms. In this article we present a completely automated classification system for the detection of masses in digitized mammographic images. The tool system we discuss consists in three processing levels: (a) Image segmentation for the localization of regions of interest (ROIs). This step relies on an iterative dynamical threshold algorithm able to select iso-intensity closed contours around gray level maxima of the mammogram. (b) ROI characterization by means of textural features computed from the gray tone spatial dependence matrix (GTSDM), containing secon…

research product

Mammogram segmentation by contour searching and massive lesion classification with neural network

The mammography is the most effective procedure for an early diagnosis of the breast cancer. In this paper, an algorithm for detecting massive lesions in mammographic images will be presented. The database consists of 3762 digital images acquired in several hospitals belonging to the MAGIC-5 collaboration. A reduction of the surface under investigation is achieved, without loss of meaningful information, through segmentation of the whole image, by means of a ROI Hunter algorithm. In the following classification step, feature extraction plays a fundamental role: some features give geometrical information, other ones provide shape parameters. Once the features are computed for each ROI, they …

research product

Mammogram Segmentation by Contour Searching and Mass Lesions Classification with Neural Network

The mammography is the most effective procedure for an early diagnosis of the breast cancer. In this paper, an algorithm for detecting masses in mammographic images will be presented. The database consists of 3762 digital images acquired in several hospitals belonging to the MAGIC-5 collaboration (Medical Applications on a Grid Infrastructure Connection). A reduction of the whole image's area under investigation is achieved through a segmentation process, by means of a ROI Hunter algorithm, without loss of meaningful information. In the following classification step, feature extraction plays a fundamental role: some features give geometrical information, other ones provide shape parameters.…

research product

GPCALMA: A Grid-based tool for mammographic screening

The next generation of High Energy Physics (HEP) experiments requires a GRID approach to a distributed computing system and the associated data management: the key concept is the Virtual Organisation (VO), a group of distributed users with a common goal and the will to share their resources. A similar approach is being applied to a group of Hospitals which joined the GPCALMA project (Grid Platform for Computer Assisted Library for MAmmography), which will allow common screening programs for early diagnosis of breast and, in the future, lung cancer. HEP techniques come into play in writing the application code, which makes use of neural networks for the image analysis and proved to be useful…

research product

The CALMA system: an artificial neural network method for detecting masses and microcalcifications in digitized mammograms

The CALMA (Computer Assisted Library for MAmmography) project is a five years plan developed in a physics research frame in collaboration between INFN (Istituto Nazionale di Fisica Nucleare) and many Italian hospitals. At present a large database of digitized mammographic images (more than 6000) was collected and a software based on neural network algorithms for the search of suspicious breast lesions was developed. Two tools are available: a microcalcification clusters hunter, based on supervised and unsupervised feedforward neural network, and a massive lesions searcher, based on a hibrid approach. Both the algorithms analyzed preprocessed digitized images by high frequency filters. Clini…

research product

The MAGIC-5 Project: Medical Applications on a Grid Infrastructure Connection

research product