0000000000429503
AUTHOR
Anja U. Bräuer
Elevation in type I interferons inhibits HCN1 and slows cortical neuronal oscillations
Central nervous system (CNS) inflammation involves the generation of inducible cytokines such as interferons (IFNs) and alterations in brain activity, yet the interplay of both is not well understood. Here, we show that in vivo elevation of IFNs by viral brain infection reduced hyperpolarization-activated currents (Ih) in cortical pyramidal neurons. In rodent brain slices directly exposed to type I IFNs, the hyperpolarization-activated cyclic nucleotide (HCN)-gated channel subunit HCN1 was specifically affected. The effect required an intact type I receptor (IFNAR) signaling cascade. Consistent with Ih inhibition, IFNs hyperpolarized the resting membrane potential, shifted the resonance fre…
LPA1, LPA2, LPA4, and LPA6receptor expression during mouse brain development
Background:LPA is a small bioactive phospholipid that acts as an extracellularsignaling molecule and is involved in cellular processes, including cell prolifera-tion, migration, and differentiation. LPA acts by binding and activating at least sixknown G protein–coupled receptors: LPA1–6. In recent years, LPA has beensuggested to play an important role both in normal neuronal development andunder pathological conditions in the nervous system. Results:We show the expression pattern of LPA receptors during mouse braindevelopment by using qRT-PCR, in situ hybridization, and immunocytochemistry.Only LPA1,LPA2,LPA4,and LPA6 mRNA transcripts were detected throughoutdevelopment stages from embryoni…