0000000000429795

AUTHOR

Jiadong Zang

0000-0002-5089-9806

showing 1 related works from this author

The 2020 skyrmionics roadmap

2020

The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as skyrmions. First identified in non-centrosymmetric bulk materials, the rapidly growing zoology of materials systems hosting skyrmions and related topological spin solitons includes bulk compounds, surfaces, thin films, heterostructures, nano-wires and nano-dots. This underscores an exceptional potential for major breakthroughs ranging from fundamental questions to applications as driven by an inte…

DYNAMICSELECTRODYNAMICSAcoustics and UltrasonicsMagnetoresistanceNuclear TheoryMOTIONMagnetismFOS: Physical sciences02 engineering and technology01 natural sciencesNuclear Theory (nucl-th)Condensed Matter - Strongly Correlated ElectronsHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin transferMAGNETORESISTANCEddc:530010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]spintronicsSpintronics[PHYS.PHYS]Physics [physics]/Physics [physics]Strongly Correlated Electrons (cond-mat.str-el)Condensed Matter - Mesoscale and Nanoscale PhysicsELECTRICAL DETECTIONSkyrmionPhysicsPhysik (inkl. Astronomie)DRIVEN021001 nanoscience & nanotechnologyCondensed Matter PhysicsEngineering physicsExperimental researchSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsddc:LATTICEHigh Energy Physics - PhenomenologyskyrmionROOM-TEMPERATUREmagnetismTEMPERATURE MAGNETIC SKYRMIONS0210 nano-technologyAND gateGENERATION
researchProduct