6533b7defe1ef96bd127689a
RESEARCH PRODUCT
The 2020 skyrmionics roadmap
Christian PfleidererStuart S. P. ParkinYasuhiro TokuraYasuhiro TokuraK. Von BergmannVincent CrosAlbert FertMaxim MostovoyNaoto NagaosaNaoto NagaosaYasujiro TaguchiSergiy MankovskyTheodore L. MoncheskyJiadong ZangNicolas ReyrenMarkus GarstHubert EbertKarin Everschor-sitteChristian H. BackTianping MaAchim RoschAchim Roschsubject
DYNAMICSELECTRODYNAMICSAcoustics and UltrasonicsMagnetoresistanceNuclear TheoryMOTIONMagnetismFOS: Physical sciences02 engineering and technology01 natural sciencesNuclear Theory (nucl-th)Condensed Matter - Strongly Correlated ElectronsHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin transferMAGNETORESISTANCEddc:530010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]spintronicsSpintronics[PHYS.PHYS]Physics [physics]/Physics [physics]Strongly Correlated Electrons (cond-mat.str-el)Condensed Matter - Mesoscale and Nanoscale PhysicsELECTRICAL DETECTIONSkyrmionPhysicsPhysik (inkl. Astronomie)DRIVEN021001 nanoscience & nanotechnologyCondensed Matter PhysicsEngineering physicsExperimental researchSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsddc:LATTICEHigh Energy Physics - PhenomenologyskyrmionROOM-TEMPERATUREmagnetismTEMPERATURE MAGNETIC SKYRMIONS0210 nano-technologyAND gateGENERATIONdescription
The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as skyrmions. First identified in non-centrosymmetric bulk materials, the rapidly growing zoology of materials systems hosting skyrmions and related topological spin solitons includes bulk compounds, surfaces, thin films, heterostructures, nano-wires and nano-dots. This underscores an exceptional potential for major breakthroughs ranging from fundamental questions to applications as driven by an interdisciplinary exchange of ideas between areas in magnetism which traditionally have been pursued rather independently. The skyrmionics roadmap provides a review of the present state of the art and the wide range of research directions and strategies currently under way. These are, for instance, motivated by the identification of the fundamental structural properties of skyrmions and related textures, processes of nucleation and annihilation in the presence of non-trivial topological winding, an exceptionally efficient coupling to spin currents generating spin transfer torques at tiny current densities, as well as the capability to purpose-design broad-band spin dynamic and logic devices.
year | journal | country | edition | language |
---|---|---|---|---|
2020-04-01 |