Dynamics, Operator Theory, and Infinite Holomorphy
Some Questions of Heinrich on Ultrapowers of Locally Convex Spaces
In this note we treat some open problems of Heinrich on ultrapowers of locally convex spaces. In section 1 we investigate the localization of bounded sets in the full ultrapower of a locally convex space, in particular the coincidence of the full and the bounded ultrapower, mainly concentrating in the case of (DF)-spaces. In section 2 we provide a partial answer to a question of Heinrich on commutativity of strict inductive limits and ultrapowers. In section 3 we analyze the relation between some natural candidates for the notion of superreflexivity in the setting of Frechet spaces. We give an example of a Frechet-Schwartz space which is not the projective limit of a sequence of superreflex…
Dynamics, Operator Theory, and Infinite Holomorphy
The works on linear dynamics in the last two decades show that many, even quite natural, linear dynamical systems exhibit wild behaviour. Linear chaos and hypercyclicity have been at the crossroads of several areas of mathematics. More recently, fascinating new connections have started to be explored: operators on spaces of analytic functions, semigroups and applications to partial differential equations, complex dynamics, and ergodic theory. Related aspects of functional analysis are the study of linear operators on Banach spaces by using geometric, topological, and algebraic techniques, the works on the geometry of Banach spaces and Banach algebras, and the study of the geometry of a Bana…