Regular packings on periodic lattices.
We investigate the problem of packing identical hard objects on regular lattices in d dimensions. Restricting configuration space to parallel alignment of the objects, we study the densest packing at a given aspect ratio X. For rectangles and ellipses on the square lattice as well as for biaxial ellipsoids on a simple cubic lattice, we calculate the maximum packing fraction \phi_d(X). It is proved to be continuous with an infinite number of singular points X^{\rm min}_\nu, X^{\rm max}_\nu, \nu=0, \pm 1, \pm 2,... In two dimensions, all maxima have the same height, whereas there is a unique global maximum for the case of ellipsoids. The form of \phi_d(X) is discussed in the context of geomet…