0000000000429994

AUTHOR

Pablo Villanueva-domingo

0000-0002-0936-4279

showing 8 related works from this author

EDGES result versus CMB and low-redshift constraints on ionization histories

2018

We examine the results from the Experiment to Detect the Global Epoch of Reionization Signature (EDGES), which has recently claimed the detection of a strong absorption in the 21 cm hyperfine transition line of neutral hydrogen, at redshifts demarcating the early stages of star formation. More concretely, we study the compatibility of the shape of the EDGES absorption profile, centered at a redshift of $z \sim 17.2$, with measurements of the reionization optical depth, the Gunn-Peterson optical depth, and Lyman-$\alpha$ emission from star-forming galaxies, for a variety of possible reionization models within the standard $\Lambda$CDM framework (that is, a Universe with a cosmological consta…

PhysicsCold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsStar formationCosmic microwave backgroundFOS: Physical sciencesAstrophysicsCosmological constantAstrophysics::Cosmology and Extragalactic AstrophysicsParameter space01 natural sciencesGalaxyRedshift0103 physical sciences010303 astronomy & astrophysicsReionizationAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Warm dark matter and the ionization history of the Universe

2017

In warm dark matter scenarios structure formation is suppressed on small scales with respect to the cold dark matter case, reducing the number of low-mass halos and the fraction of ionized gas at high redshifts and thus, delaying reionization. This has an impact on the ionization history of the Universe and measurements of the optical depth to reionization, of the evolution of the global fraction of ionized gas and of the thermal history of the intergalactic medium, can be used to set constraints on the mass of the dark matter particle. However, the suppression of the fraction of ionized medium in these scenarios can be partly compensated by varying other parameters, as the ionization effic…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Cold dark matter010308 nuclear & particles physicsHot dark matterScalar field dark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)13. Climate action0103 physical sciencesMixed dark matterOptical depth (astrophysics)Warm dark matter010303 astronomy & astrophysicsReionizationLight dark matterAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Constraining the primordial black hole abundance with 21-cm cosmology

2019

The discoveries of a number of binary black hole mergers by LIGO and VIRGO has reinvigorated the interest that primordial black holes (PBHs) of tens of solar masses could contribute non-negligibly to the dark matter energy density. Should even a small population of PBHs with masses $\gtrsim \mathcal{O}(M_\odot)$ exist, they could profoundly impact the properties of the intergalactic medium and provide insight into novel processes at work in the early Universe. We demonstrate here that observations of the 21cm transition in neutral hydrogen during the epochs of reionization and cosmic dawn will likely provide one of the most stringent tests of solar mass PBHs. In the context of 21cm cosmolog…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaHalo mass functionDark matterCosmic microwave backgroundCosmic background radiationFOS: Physical sciencesPrimordial black holeAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesUniverseHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Binary black hole13. Climate action0103 physical sciences010306 general physicsReionizationmedia_commonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Was there an early reionization component in our universe?

2017

A deep understanding of the Epoch of Reionization is still missing in our knowledge of the universe. While future probes will allow us to test the precise evolution of the free electron fraction from redshifts between $z\simeq 6$ and $z\simeq 20$, at present one could ask what kind of reionization processes are allowed by present Cosmic Microwave Background temperature and polarization measurements. An early contribution to reionization could imply a departure from the standard picture where star formation determines the reionization onset. BBy considering a broad class of possible reionization parameterizations, we find that current data do not require an early reionization component in ou…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsStar formationComponent (thermodynamics)media_common.quotation_subjectCosmic microwave backgroundAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics16. Peace & justice01 natural sciencesRedshiftUniverseFrequentist inference0103 physical sciencesOptical depth (astrophysics)010303 astronomy & astrophysicsReionizationAstrophysics - Cosmology and Nongalactic Astrophysicsmedia_commonJournal of Cosmology and Astroparticle Physics
researchProduct

Shedding light on dark matter through 21 cm cosmology and reionization constraints

2021

Durante las últimas décadas, nuestra comprensión del universo ha alcanzado un nivel remarcable, pudiendo probar predicciones cosmológicas con una precisión asombrosa. Las observaciones de los fotones del Fondo Cósmico de Microondas, junto con los estudios de catálogos galaxias, nos proporcionan una comprensión profunda de la geometría, los componentes y la cronología del cosmos. No obstante, la naturaleza de la Materia Oscura aún se desconoce. La composición, masa e interacciones de las partículas de Materia Oscura presentan uno de los enigmas más intrigantes de la cosmología actual. En esta tesis doctoral se estudian diferentes candidatos a Materia Oscura que pueden dejar un impacto en el …

cosmología:FÍSICA [UNESCO]materia oscuraUNESCO::FÍSICAUNESCO::ASTRONOMÍA Y ASTROFÍSICAreionización:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Variations in fundamental constants at the cosmic dawn

2020

The observation of space-time variations in fundamental constants would provide strong evidence for the existence of new light degrees of freedom in the theory of Nature. Robustly constraining such scenarios requires exploiting observations that span different scales and probe the state of the Universe at different epochs. In the context of cosmology, both the cosmic microwave background and the Lyman-α forest have proven to be powerful tools capable of constraining variations in electromagnetism, however at the moment there do not exist cosmological probes capable of bridging the gap between recombination and reionization. In the near future, radio telescopes will attempt to measure the 21…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesCosmologyRadio telescopeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesReionizationcosmology of theories beyond the SMAstrophysiquePhysicsCOSMIC cancer database010308 nuclear & particles physicsSpectral densityhep-phAstronomy and AstrophysicsAstronomieHigh Energy Physics - Phenomenologyparticle physics-cosmology connectionastro-ph.CODark AgesreionizationAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A fresh look into the interacting dark matter scenario

2018

The elastic scattering between dark matter particles and radiation represents an attractive possibility to solve a number of discrepancies between observations and standard cold dark matter predictions, as the induced collisional damping would imply a suppression of small-scale structures. We consider this scenario and confront it with measurements of the ionization history of the Universe at several redshifts and with recent estimates of the counts of Milky Way satellite galaxies. We derive a conservative upper bound on the dark matter-photon elastic scattering cross section of $\sigma_{\gamma \rm{DM}} < 8 \times 10^{-10} \, \sigma_T \, \left(m_{\rm DM}/{\rm GeV}\right)$ at $95\%$~CL, abou…

PhysicsConservation lawCosmology and Nongalactic Astrophysics (astro-ph.CO)Photondark matter theory010308 nuclear & particles physicsDark matterFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGalaxydwarfs galaxiesparticle physics-cosmology connection13. Climate actionIonization0103 physical sciencesreionizationSatellite010303 astronomy & astrophysicsReionizationAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A brief review on primordial black holes as dark matter

2021

Primordial black holes (PBHs) represent a natural candidate for one of the components of the dark matter (DM) in the Universe. In this review, we shall discuss the basics of their formation, abundance and signatures. Some of their characteristic signals are examined, such as the emission of particles due to Hawking evaporation and the accretion of the surrounding matter, effects which could leave an impact in the evolution of the Universe and the formation of structures. The most relevant probes capable of constraining their masses and population are discussed.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)AstronomyAstrophysics::High Energy Astrophysical PhenomenaCosmic microwave backgroundPopulationDark matterGeophysics. Cosmic physicsFOS: Physical sciencesPrimordial black holeQB1-991AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGravitational microlensing01 natural sciencesCosmologydark matteraccretion0103 physical sciences010306 general physicseducationAstrophysics::Galaxy AstrophysicsPhysicseducation.field_of_study010308 nuclear & particles physicsGravitational waveQC801-809primordial black holesAstronomy and AstrophysicsAccretion (astrophysics)gravitational waves21 cm cosmologycosmologyAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct