0000000000430145
AUTHOR
Eren Metin Elçi
Efficient simulation of the random-cluster model
The simulation of spin models close to critical points of continuous phase transitions is heavily impeded by the occurrence of critical slowing down. A number of cluster algorithms, usually based on the Fortuin-Kasteleyn representation of the Potts model, and suitable generalizations for continuous-spin models have been used to increase simulation efficiency. The first algorithm making use of this representation, suggested by Sweeny in 1983, has not found widespread adoption due to problems in its implementation. However, it has been recently shown that it is indeed more efficient in reducing critical slowing down than the more well-known algorithm due to Swendsen and Wang. Here, we present…
Fragmentation of fractal random structures.
We analyze the fragmentation behavior of random clusters on the lattice under a process where bonds between neighboring sites are successively broken. Modeling such structures by configurations of a generalized Potts or random-cluster model allows us to discuss a wide range of systems with fractal properties including trees as well as dense clusters. We present exact results for the densities of fragmenting edges and the distribution of fragment sizes for critical clusters in two dimensions. Dynamical fragmentation with a size cutoff leads to broad distributions of fragment sizes. The resulting power laws are shown to encode characteristic fingerprints of the fragmented objects.
Corner contribution to cluster numbers in the Potts model
For the two-dimensional Q-state Potts model at criticality, we consider Fortuin-Kasteleyn and spin clusters and study the average number N_Gamma of clusters that intersect a given contour Gamma. To leading order, N_Gamma is proportional to the length of the curve. Additionally, however, there occur logarithmic contributions related to the corners of Gamma. These are found to be universal and their size can be calculated employing techniques from conformal field theory. For the Fortuin-Kasteleyn clusters relevant to the thermal phase transition we find agreement with these predictions from large-scale numerical simulations. For the spin clusters, on the other hand, the cluster numbers are no…