Universality classes for wetting in two-dimensional random-bond systems
Interface-unbinding transitions, such as those arising in wetting phenomena, are studied in two-dimensional systems with quenched random impurities and general interactions. Three distinct universality classes or scaling regimes are investigated using scaling arguments and extensive transfer-matrix calculations. Both the critical exponents and the critical amplitudes are determined for the weak- and the strong-fluctuation regime. In the borderline case of the intermediate-fluctuation regime, the asymptotic regime is not accessible to numerical simulations. We also find strong evidence for a nontrivial delocalization transition of an interface that is pinned to a line of defects.