0000000000430557

AUTHOR

Jacek Jagielski

showing 2 related works from this author

Major results from the first plasma campaign of the Wendelstein 7-X stellarator

2017

After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for t…

Magnetic confinementNuclear and High Energy PhysicsTechnology and EngineeringPlasma heatingCyclotron resonanceCONFINEMENT01 natural sciencesElectron cyclotron resonance010305 fluids & plasmaslaw.inventionPHYSICSNuclear physicsstellaratorcurrent drive; magnetic confinement; plasma heating; stellarator; Nuclear and High Energy Physics; Condensed Matter Physicslaw0103 physical sciencesddc:530010306 general physicstellaratorStellaratorPhysicsmagnetic confinementMagnetic confinement fusionplasma heatingcurrent drive;magnetic confinement;plasma heating;stellaratorPlasma530 PhysikCondensed Matter PhysicsTRANSPORTCurrent drivecurrent driveElectron temperaturePlasma diagnosticsAtomic physicsWendelstein 7-X[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]StellaratorNuclear Fusion
researchProduct

Ion bombardment of polyethylene—influence of polymer structure

2007

Abstract Polyethylenes of various macromolecular and supermolecular structures were studied from the point of view of their susceptibility to an ion beam treatment. An influence of molecular weight (Mw), molecular weight distribution (Mw/Mn) and the degree of branching were compared within the set of low-density polyethylenes (LDPE) studied. An influence of the length of branches was compared between LDPE, linear low-density (LLDPE) and high-density (HDPE) polyethylenes. An influence of the degree of crystallinity and the morphology of a crystalline phase were compared for HDPE samples solidified under various thermal conditions and ultra-high molecular weight polyethylene (UHMWPE). Plate p…

chemistry.chemical_classificationMaterials scienceIon beamPolymerPolyethyleneCondensed Matter PhysicsSurfaces Coatings and FilmsIonCondensed Matter::Soft Condensed MatterLinear low-density polyethyleneLow-density polyethylenechemistry.chemical_compoundCrystallinitychemistryChemical engineeringPolymer chemistryHigh-density polyethyleneInstrumentationVacuum
researchProduct