0000000000431062
AUTHOR
Jean Dolbeault
A logarithmic fourth-order parabolic equation and related logarithmic Sobolev inequalities
A logarithmic fourth-order parabolic equation in one space dimension with periodic boundary conditions is studied. This equation arises in the context of fluctuations of a stationary nonequilibrium interface and in the modeling of quantum semiconductor devices. The existence of global-in-time non-negative weak solutions and some regularity results are shown. Furthermore, we prove that the solution converges exponentially fast to its mean value in the ``entropy norm'' and in the Fisher information, using a new optimal logarithmic Sobolev inequality for higher derivatives. In particular, the rate is independent of the solution and the constant depends only on the initial value of the entropy.
Entropies and Equilibria of Many-Particle Systems: An Essay on Recent Research
International audience; .This essay is intended to present a fruitful collaboration which has developed among a group of people whose names are listed above: entropy methods have proved over the last years to be an efficient tool for the understanding of the qualitative properties of physically sound models, for accurate numerics and for a more mathematical understanding of nonlinear PDEs. The goal of this essay is to sketch the historical development of the concept of entropy in connection with PDEs of continuum mechanics, to present recent results which have been obtained by the members of the group and to emphasize the most striking achievements of this research. The presentation is by n…