0000000000431144
AUTHOR
Stefano Caliro
Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy)
Fluids supplied by stored magma at depth are causal factors of volcanic unrest, as they can cause pressurization/heating of hydrothermal systems. However, evidence for links between hydrothermal pressurization, CO2 emission and volcano seismicity have remained elusive. Here, we use recent (2010−2020) observations at Campi Flegrei caldera (CFc) to show hydrothermal pressure, gas emission and seismicity at CFc share common source areas and well-matching temporal evolutions. We interpret the recent escalation in seismicity and surface gas emissions as caused by pressure-temperature increase at the top of a vertically elongated (0.3–2 km deep) gas front. Using mass (steam) balance consideration…
Volcanic CO2 seep geochemistry and use in understanding ocean acidification
AbstractOcean acidification is one of the most dramatic effects of the massive atmospheric release of anthropogenic carbon dioxide (CO2) that has occurred since the Industrial Revolution, although its effects on marine ecosystems are not well understood. Submarine volcanic hydrothermal fields have geochemical conditions that provide opportunities to characterise the effects of elevated levels of seawater CO2 on marine life in the field. Here, we review the geochemical aspects of shallow marine CO2-rich seeps worldwide, focusing on both gas composition and water chemistry. We then describe the geochemical effects of volcanic CO2 seepage on the overlying seawater column. We also present new g…
Hydrothermal fluid venting in the offshore sector of Campi Flegrei caldera: A geochemical, geophysical, and volcanological study
The ongoing unrest at the Campi Flegrei caldera (CFc) in southern Italy is prompting exploration of its poorly studied offshore sector. We report on a multidisciplinary investigation of the Secca delle Fumose (SdF), a submarine relief known since antiquity as the largest degassing structure of the offshore sector of CFc. We combined high-resolution morpho-bathymetric and seismo-stratigraphic data with onshore geological information to propose that the present-day SdF morphology and structure developed during the initial stages of the last CFc eruption at Monte Nuovo in AD 1538. We suggest that the SdF relief stands on the eastern uplifted border of a N-S-trending graben-like structure forme…
Geosphere-biosphere interactions in bio-activity volcanic lakes: Evidences from Hule and Rìo Cuarto (Costa Rica)
Hule and R ́ıo Cuarto are maar lakes located 11 and 18 km N of Poa ́s volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemica…
Fumarolic tremor and geochemical signals during a volcanic unrest
Fumaroles are known to generate seismic and infrasonic tremor, but this fumarolic tremor has so far received little attention. Seismic records taken near the Pisciarelli fumarole, a vigorously degassing vent of the restless Campi Flegrei volcano in Italy, reveal a fumarolesourced tremor whose amplitude has recently intensified. We use independent geochemical evidence to interpret this fumarolic tremor for the first time quantitatively. We find that the temporal increase in fumarolic tremor RSAM (real-time seismic-amplitude measurement) quantitatively correlates with increases in independent proxies of fumarole activity, including the CO2concentrations in the fumarole's atmospheric plume, th…
Mercury content and speciation in the Phlegrean Fields volcanic complex: evidence from hydrothermal system and fumaroles
Abstract Mercury is outstanding among the global environmental pollutants of continuing concern. Although degassing of active volcanic areas represents an important natural source of mercury into the atmosphere, still little is known about the amount and behaviour of Hg in volcanic aquifers, especially regarding its chemical speciation. In order to assess the importance of mercury emissions from active volcanoes, thermal waters were sampled in the area surrounding La Solfatara, Pozzuoli bay. This is the most active zone of the Phlegrean Fields complex (coastal area north–west of Naples), with intense hydrothermal activity at present day. Studied groundwaters show total Hg (THg) concentratio…
Escalating CO2 degassing at the Pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest
Abstract This short communication aims at providing an updated report on degassing activity and ground deformation variations observed during the ongoing (2012–2019) Campi Flegrei caldera unrest, with a particular focus on Pisciarelli, currently its most active fumarolic field. We show that the CO2 flux from the main Pisciarelli fumarolic vent (referred as “Soffione”) has increased by a factor > 3 since 2012, reaching in 2018–2019 levels (>600 tons/day) that are comparable to those typical of a medium-sized erupting arc volcano. A substantial widening of the degassing vents and bubbling pools, and a further increase in CO2 concentrations in ambient air (up to 6000 ppm), have also been detec…
Magmas near the critical degassing pressure drive volcanic unrest towards a critical state
During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma–hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H2O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation …
The geological CO2degassing history of a long-lived caldera
The majority of the ~100 Holocene calderas on Earth host vigorously active hydrothermal systems, the heat and volatile budgets of which are sustained by degassing of deeply stored magma. Calderas may thus contribute a nontrivial, although poorly quantified, fraction of the global budget of magmatic volatiles such as CO2. Here we use original isotopic a d petrological results from Campi Flegrei volcano, Italy, to propose that hydrothermal calcites are natural mineral archives for the magmatic CO2 that reacted with reservoir rocks during the geological history of a caldera. We show that Campi Flegrei calcites, identified in core samples extracted from 3-km-deep geothermal wells, formed at iso…
First simultaneous mercury and major volatiles characterization of atmospheric hydrothermal emissions at the Pisciarelli's fumarolic system (Campi Flegrei, Italy)
Abstract Hydrothermal systems with active surface expressions are important natural source of atmospheric mercury. Here we report on the first simultaneous assessment of gaseous elemental mercury (GEM) and major volatiles (H2S and CO2) fluxes from the fumarolic system of Pisciarelli, currently the most active at the Campi Flegrei caldera (CFc), Naples (Italy). This was achieved via a GPS-synchronized Lumex and MultiGAS survey which extends similar investigations reported elsewhere. GEM concentrations measured in the fumarolic emissions were consistently above background air level close to the degassing area (mean ~ 8 ± 3 ng m−3 on average) and ranged up to 12,000 ng m−3. Our data evidenced …
Carbon dioxide diffuse emission and thermal energy release from hydrothermal systems at Copahue-Caviahue Volcanic Complex (Argentina)
Fil: Chiodini, Giovanni. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna. Bologna, Italia. Fil: Cardellini, Carlo. Università degli Studi di Perugia, Dipartimento di Fisica e Geologia. Perugia, Italy. Fil: Lamberti, María C. Universidad de Buenos Aires. Instituto de Estudios Andinos. Buenos Aires, Argentina. Fil: Agusto, Mariano. Universidad de Buenos Aires. Instituto de Estudios Andinos. Buenos Aires, Argentina. Fil: Caselli, Alberto Tomás Universidad Nacional de Río Negro. Instituto de Investigación en Paleobiología y Geología. Río Negro. Argentina. Fil: Liccioli, Caterina. Universidad de Buenos Aires. Instituto de Estudios Andinos. Buenos Aires, Argentina. Fil: Tambure…
Carbon degassing through karst hydrosystems of Greece
Estimation of CO2 degassing from active tectonic structures and regional hydrothermal systems is essential for the quantification of presentday Earth degassing [Frondini et al., 2019 and references therein]. Due to the high solubility of CO2 in water, great amounts of deep inorganic carbon can be dissolved, transported, and released from regional aquifers. By applying a massbalance approach [Chiodini et al., 2000], different sources of the dissolved CO2 can be discriminated. The main source of degassing in Greece is concentrated in hydrothermal and volcanic areas. However, deep CO2 from active tectonic areas has not yet been quantified. A key point of this research is to investigate the pos…
The hydrothermal system of the Domuyo volcanic complex (Argentina): A conceptual model based on new geochemical and isotopic evidences
The Domuyo volcanic complex (Neuquén Province, Argentina) hosts one of the most promising geothermal systems of Patagonia, giving rise to thermal manifestations discharging hot and Cl−-rich fluids. This study reports a complete geochemical dataset of gas and water samples collected in three years (2013, 2014 and 2015) from the main fluid discharges of this area. The chemical and isotopic composition (δD-H2O and δ18O-H2O) of waters indicates that rainwater and snow melting are the primary recharge of a hydrothermal reservoir located at relative shallow depth (400–600 m) possibly connected to a second deeper (2–3 km) reservoir. Reactive magmatic gases are completely scrubbed by the hydrotherm…
Carbon dioxide degassing from Tuscany and Northern Latium (Italy)
Abstract The CO 2 degassing process from a large area on the Tyrrhenian side of central Italy, probably related to the input into the upper crust of mantle fluids, was investigated in detail through the geochemical study of gas emissions and groundwater. Mass-balance calculations and carbon isotopes show that over 50% of the inorganic carbon in regional groundwater is derived from a deep source highlighting gas−liquid separation processes at depth. The deep carbonate−evaporite regional aquifer acts as the main CO 2 reservoir and when total pressure of the reservoir fluid exceeds hydrostatic pressure, a free gas phase separates from the parent liquid and escapes toward the surface generating…
Mineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: Insights from island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy)
This paper documents arsenic concentrations in 157 groundwater samples from the island of Ischia and the Phlegrean Fields, two of the most active volcano-hosted hydrothermal systems from the Campanian Volcanic Province (Southern Italy), in an attempt to identify the environmental conditions and mineral-solution reactions governing arsenic aqueous cycling. On Ischia and in the Phlegrean Fields, groundwaters range in composition from NaCl brines, which we interpret as the surface discharge of deep reservoir fluids, to shallow-depth circulating fluids, the latter ranging from acid-sulphate steam-heated to hypothermal, cold, bicarbonate groundwaters. Arsenic concentrations range from 1.6 to 690…
First 13C/12C isotopic characterisation of volcanic plume CO2
We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 betw…
Evidence of a recent input of magmatic gases into the quiescent volcanic edifice of Panarea, Aeolian Islands, Italy
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy. - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Palermo, Italy. - Dipartimento Chimica e Fisica della Terra ed Applicazioni, Palermo, Italy.
The Hydrothermal System of the Campi Flegrei Caldera, Italy
In this chapter, we review the state-of-the-art of the Campi Flegrei caldera (Naples) hydrothermal system, and its behaviour during the last decades. The Campi Flegrei caldera has been undergoing unrest since 1950, as evidenced by recurrent bradyseismic episodes accompanied by manifest changes in the degassing budget, degassing patterns and in the composition of the fumarolic fluids. In-depth analysis of geochemical and geophysical datasets acquired over decades has allowed identification of the mechanisms driving volcanic unrest at the Campi Flegrei caldera. We propose a conceptual model of the hydrothermal system feeding Solfatara fumaroles, where geochemical information is integrated wit…