0000000000431147

AUTHOR

Flora Giudicepietro

Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy)

Fluids supplied by stored magma at depth are causal factors of volcanic unrest, as they can cause pressurization/heating of hydrothermal systems. However, evidence for links between hydrothermal pressurization, CO2 emission and volcano seismicity have remained elusive. Here, we use recent (2010−2020) observations at Campi Flegrei caldera (CFc) to show hydrothermal pressure, gas emission and seismicity at CFc share common source areas and well-matching temporal evolutions. We interpret the recent escalation in seismicity and surface gas emissions as caused by pressure-temperature increase at the top of a vertically elongated (0.3–2 km deep) gas front. Using mass (steam) balance consideration…

research product

First muography of Stromboli volcano

AbstractMuography consists in observing the differential absorption of muons – elementary particles produced through cosmic-ray interactions in the Earth atmosphere – going through the volcano and can attain a spatial resolution of tens of meters. We present here the first experiment of nuclear emulsion muography at the Stromboli volcano. Muons have been recorded during a period of five months by a detector of 0.96 m2 area. The emulsion films were prepared at the Gran Sasso underground laboratory and were analyzed at Napoli, Salerno and Tokyo scanning laboratories. Our results highlight a significant low-density zone at the summit of the volcano with density contrast of 30–40% with respect …

research product

Fumarolic tremor and geochemical signals during a volcanic unrest

Fumaroles are known to generate seismic and infrasonic tremor, but this fumarolic tremor has so far received little attention. Seismic records taken near the Pisciarelli fumarole, a vigorously degassing vent of the restless Campi Flegrei volcano in Italy, reveal a fumarolesourced tremor whose amplitude has recently intensified. We use independent geochemical evidence to interpret this fumarolic tremor for the first time quantitatively. We find that the temporal increase in fumarolic tremor RSAM (real-time seismic-amplitude measurement) quantitatively correlates with increases in independent proxies of fumarole activity, including the CO2concentrations in the fumarole's atmospheric plume, th…

research product