0000000000431222
AUTHOR
José Ma. Ibáñez
Gravitational waves from galaxy clusters: a new observable effect
A rich galaxy cluster showing strong resemblance with the observed ones is simulated. Cold dark matter spectrum, Gaussian statistics, flat universe, and two components -- baryonic gas plus dark matter particles -- are considered. We have calculated the gravitational-wave output during the epoch of the fully nonlinear and nonsymmetric cluster evolution. The amplitudes and frequencies of the resulting gravitational waves are estimated. Since frequencies are very small --of the order of $10^{-17} Hz$ -- a complete pulse cannot be observed during an admissible integration time; nevertheless, it is proved that these waves can produce an interesting secular effect which appears to be observable w…
A multidimensional hydrodynamic code for structure evolution in cosmology
A cosmological multidimensional hydrodynamic code is described and tested. This code is based on modern high-resolution shock-capturing techniques. It can make use of a linear or a parabolic cell reconstruction as well as an approximate Riemann solver. The code has been specifically designed for cosmological applications. Two tests including shocks have been considered: the first one is a standard shock tube and the second test involves a spherically symmetric shock. Various additional cosmological tests are also presented. In this way, the performance of the code is proved. The usefulness of the code is discussed; in particular, this powerful tool is expected to be useful in order to study…
Subparsec Polarimetric Radio Observations of 3C 120: A Close‐up Look at Superluminal Motion
We present two-epoch polarimetric images of the radio galaxy 3C 120 obtained with the Very Long Baseline Array at 22 and 43 GHz. Because of the proximity of 3C 120 (z = 0.033), the 43 GHz observations allow us to observe superluminal motions with the highest resolution achieved to date, 0.07 h-1 pc. Up to ten different superluminal components, with velocities between 2.3 and 5.4 h-1c, can be observed in this active source, with approximately monthly ejections of new components. Polarization is observed in several components and at both frequencies, with peaks in the linearly polarized flux not always coincident with the peaks in total intensity. The orientation of the magnetic field is obse…
The nonadiabatic general-relativistic stellar oscillations
We have derived the equations which govern the linear nonadiabatic general-relativistic radial oscillations. The perturbation produces a heat flux that is coupled with the geometry, through the Einstein field equations of a stellar configuration. The classical limit is recovered. The stability conditions are examined by means of a simplified one-zone model.
A "horizon adapted" approach to the study of relativistic accretion flows onto rotating black holes
We present a new geometrical approach to the study of accretion flows onto rotating (Kerr) black holes. Instead of Boyer-Lindquist coordinates, the standard choice in all existing numerical simulations in the literature, we employ the simplest example of a horizon adapted coordinate system, the Kerr-Schild coordinates. This choice eliminates boundary ambiguities and unphysical divergent behavior at the event horizon. Computations of Bondi-Hoyle accretion onto extreme Kerr black holes, performed here for the first time, demonstrate the key advantages of this procedure. We argue it offers the best approach to the numerical study of the, observationally, increasingly more accesible relativisti…
Neutron star formation with presence of hyperons
We study the influence of hyperons during the early stages of the birth of a neutron star (Kelvin-Helmholtz phase), employing neutrino opacities calculated consistently with the equation of state by considering all possible neutrino-hyperon reactions. Our results from numerical simulations of newly born neutron stars, or proto-neutron stars, show an increasingly important influence of hyperons at later times. It is remarkable the existence of metastable stars, which are stable at birth but become unstable during the evolution as the deleptonization proceeds and the hyperon concentration increases. We also present results from hydrodynamical simulations of the collapse to a black hole of met…
Assessment of a high-resolution central scheme for the solution of the relativistic hydrodynamics equations
We assess the suitability of a recent high-resolution central scheme developed by Kurganov & Tadmor (2000) for the solution of the relativistic hydrodynamics equations. The novelty of this approach relies on the absence of Riemann solvers in the solution procedure. The computations we present are performed in one and two spatial dimensions in Minkowski spacetime. Standard numerical experiments such as shock tubes and the relativistic flat-faced step test are performed. As an astrophysical application the article includes two-dimensional simulations of the propagation of relativistic jets using both Cartesian and cylindrical coordinates. The simulations reported clearly show the capabili…