0000000000431410

AUTHOR

Michele Orini

Genetic analyses of the QT interval and its components in over 250K individuals identifies new loci and pathways affecting ventricular depolarization and repolarization

AbstractThe QT interval is an electrocardiographic measure representing the sum of ventricular depolarization (QRS duration) and repolarization (JT interval). Abnormalities of the QT interval are associated with potentially fatal ventricular arrhythmia. We conducted genome-wide multi-ancestry analyses in >250,000 individuals and identified 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identified associations with Mendelian disease genes. Enrichments were observed in established pathways for QT and JT, with new genes indicated in insulin-receptor signalling and cardiac energy meta…

research product

Model-Based Evaluation of Methods for Respiratory Sinus Arrhythmia Estimation

OBJECTIVE: Respiratory sinus arrhythmia (RSA) refers to heart rate oscillations synchronous with respiration, and it is one of the major representations of cardiorespiratory coupling. Its strength has been suggested as a biomarker to monitor different conditions, and diseases. Some approaches have been proposed to quantify the RSA, but it is unclear which one performs best in specific scenarios. The main objective of this study is to compare seven state-of-the-art methods for RSA quantification using data generated with a model proposed to simulate, and control the RSA. These methods are also compared, and evaluated on a real-life application, for their ability to capture changes in cardior…

research product

Instantaneous Transfer Entropy for the Study of Cardiovascular and Cardio-Respiratory Nonstationary Dynamics

Objective: Measures of transfer entropy (TE) quantify the direction and strength of coupling between two complex systems. Standard approaches assume stationarity of the observations, and therefore are unable to track time-varying changes in nonlinear information transfer with high temporal resolution. In this study, we aim to define and validate novel instantaneous measures of TE to provide an improved assessment of complex nonstationary cardiorespiratory interactions. Methods: We here propose a novel instantaneous point-process TE (ipTE) and validate its assessment as applied to cardiovascular and cardiorespiratory dynamics. In particular, heartbeat and respiratory dynamics are characteriz…

research product

Instantaneous transfer entropy for the study of cardio-respiratory dynamics

Measures of transfer entropy have been proposed to quantify the directional coupling and strength between two complex physiological variables. Particular attention has been given to nonlinear interactions within cardiovascular and respiratory dynamics as influenced by the autonomic nervous system. However, standard transfer entropy estimates have shown major limitations in dealing with issues concerning stochastic system modeling, limited observations in time, and the assumption of stationarity of the considered physiological variables. Moreover, standard estimates are unable to track time-varying changes in nonlinear coupling with high resolution in time. Here, we propose a novel definitio…

research product