0000000000432212
AUTHOR
B. Moussallam
Form factors of the isovector scalar current and the $\eta\pi$ scattering phase shifts
A model for S-wave $\eta\pi$ scattering is proposed which could be realistic in an energy range from threshold up to above one GeV, where inelasticity is dominated by the $K\bar{K}$ channel. The $T$-matrix, satisfying two-channel unitarity, is given in a form which matches the chiral expansion results at order $p^4$ exactly for the $\eta\pi\to\eta\pi$, $\eta\pi\to K\bar{K}$ amplitudes and approximately for $K\bar{K}\to K\bar{K}$. It contains six phenomenological parameters. Asymptotic conditions are imposed which ensure a minimal solution of the Muskhelishvili-Omn\`es problem, thus allowing to compute the $\eta\pi$ and $K\bar{K}$ form factor matrix elements of the $I=1$ scalar current from …
Form factors of the isovector scalar current and the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta \pi $$\end{document}ηπ scattering phase shifts
A model for S-wave \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta \pi $$\end{document}ηπ scattering is proposed which could be realistic in an energy range from threshold up to above 1 GeV, where inelasticity is dominated by the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K{\bar{K}}$$\end{document}KK¯ channel. The T-matrix,…
$a_0-f_0$ mixing in the Khuri-Treiman equations for $\eta\to 3\pi$
A reliable determination of the isospin breaking double quark mass ratio from precise experimental data on $\eta\to 3\pi$ decays should be based on the chiral expansion of the amplitude supplemented with a Khuri-Treiman type dispersive treatment of the final-state interactions. We discuss an extension of this formalism which allows to estimate the effects of the $a_0(980)$ and $f_0(980)$ resonances and their mixing on the $\eta\to 3\pi$ amplitudes. Matrix generalisations of the equations describing elastic $\pi\pi$ rescattering with $I=0,\,2$ are introduced which accomodate both $\pi\pi/K\bar{K}$ and $\eta\pi/K\bar{K}$ coupled-channel rescattering. Isospin violation induced by the physical …
The Belle II Physics Book
cd. autorów: L. Cao48,‡, G. Caria145,‡, G. Casarosa57,‡, C. Cecchi56,‡,D. Cˇ ervenkov10,‡,M.-C. Chang22,‡, P. Chang92,‡, R. Cheaib146,‡, V. Chekelian83,‡, Y. Chen154,‡, B. G. Cheon28,‡, K. Chilikin77,‡, K. Cho70,‡, J. Choi14,‡, S.-K. Choi27,‡, S. Choudhury35,‡, D. Cinabro170,‡, L. M. Cremaldi146,‡, D. Cuesta47,‡, S. Cunliffe16,‡, N. Dash33,‡, E. de la Cruz Burelo9,‡, E. de Lucia52,‡, G. De Nardo54,‡, †Editor. ‡Belle II Collaborator. §Theory or external contributing author. M. De Nuccio16,‡, G. De Pietro59,‡, A. De Yta Hernandez9,‡, B. Deschamps129,‡, M. Destefanis60,‡, S. Dey116,‡, F.Di Capua54,‡, S.Di Carlo75,‡, J. Dingfelder129,‡, Z. Doležal10,‡, I. Domínguez Jiménez125,‡, T.V. Dong30,26,…