0000000000432568
AUTHOR
A. Savelius
Probing the shape of176Hgalong the yrast line
In-beam \ensuremath{\gamma}-ray and \ensuremath{\gamma}-\ensuremath{\gamma} coincidence measurements have been made for the very neutron-deficient nucleus ${}^{176}\mathrm{Hg}$ using the recoil-decay tagging (RDT) technique. The irregular yrast sequence observed up to $I=10\ensuremath{\Elzxh}$ indicates that the prolate intruder band, seen in heavier Hg isotopes near the neutron midshell, crosses the nearly spherical ground-state band of ${}^{176}\mathrm{Hg}$ above $I=6\ensuremath{\Elzxh}.$
High-spin levels in 63 145 Eu82
The level scheme of theN=82 nucleus145Eu has been extended toI=(55/2) andEx=11.2 MeV in an experiment with the Tessa Compton-suppressed Ge detector array using the127I(22Ne,4n) reaction. Most of the complicated and irregular level scheme of145Eu can be interpreted as proton multi-quasiparticle states in comparison to the64146Gd82 core nucleus but also excitations across the neutronN=82 core have been observed.
High-spin study of 119Xe
Abstract High-spin states have been populated in 54 119 Xe via the 96 Mo( 27 Al,p3n) reaction at 133 MeV, using the Jurosphere γ-ray spectrometer to record triple γ-ray coincidences. The known level scheme has been significantly extended and several band crossings identified. In particular, the νh 11 2 yrast band has been extended to I π = ( 83 2 − ) and shows features which are consistent with those of smooth band termination at high spin. Theoretical results for 119 Xe at high spin are discussed within the framework of cranked Nilsson-Strutinsky calculations, together with results for 117 Xe.
First observation of excited states in the neutron deficientN=86isotones159Taand160W
Isomeric state in the doubly odd196At nucleus
An excited isomeric state has been identified in the 196At nucleus using the recoil decay tagging technique. This is the first identification of an excited state in this neutron-deficient odd-odd nucleus. Several tentative prompt γ-rays have also been correlated with 196At α-decay, although it has not been possible to assign them to specific energy levels in 196At. The mean lifetime of the isomeric state has been measured as τ = 11±2 µs. The new level is compared with similar low-lying states in neighbouring nuclei and is de-excited by an E2 γ-ray transition, the large hindrance of which is not expected.
Gamma-ray spectroscopy of191,193Bi
Very neutron-deficient Bi-191,Bi-193 nuclei have been studied at the Department of Physics, University of Jyvaskyla, Finland (JYFL) employing the Jurosphere II Ge-detector array coupled to the gas-filled recoil separator RITU and different tagging techniques. For the first time in heavy odd-mass nuclei, a collective band (oblate) is identified above the 2p-1h (1/2(+)) proton intruder state in Bi-191. In both Bi-191,Bi-193, a band based on isomeric 13/2(+) state has been observed and oblate deformation for this state has been deduced. ispartof: Acta Physica Polonica B vol:32 issue:3 pages:1019-1023 ispartof: location:POLAND, ZAKOPANE status: published
Collective rotational – vibrational transition in the very neutron-deficient nuclei Pt
Excited states have been identified for the first time in very neutron deficient Pt-171.172 nuclei using the recoil-or-decay tagging technique. The ground-state band in Pt-172 has been established up to I-pi = 8+. A similar level sequence, presumably built on the I-pi = 13/2(+) state, is observed for Pt-171. The data are compared with theoretical calculations based on the mean field approach and the random phase approximation and are put into the context of the systematics of platinum isotopes. (C) 1998 Elsevier Science B.V. All rights reserved.
Evolution of collective motion in light polonium nuclei
The {gamma}-ray spectroscopy of even- and odd-mass isotopes of polonium have been studied using arrays of Ge detectors coupled to recoil-mass analyzers, including recoil-decay tagging techniques. The level energies and B(E2) branching ratios can be reproduced by theoretical frameworks which do not explicitly include proton particle-hole excitations across the Z = 82 shell, conclusions in contrast to those deduced from alpha-decay measurements.
First observation of excited states in 184Pb: spectroscopy beyond the neutron mid-shell
Excited states have been identified for the first time in 184Pb, the first even-even Pb isotope beyond the 82 < N < 126 mid-shell, using the recoil-decay tagging (RDT) technique. A collective band built on the first-excited 2+ state has been observed. This resembles those seen in 186,188Pb and the Hg isotones, and can thus be associated with a prolate-deformed shape. Variable moment of inertia (VMI) fits of the prolate 0+ level energies in 184,186,188Pb indicate that the minimum appears at N= 103, the same neutron number at which the corresponding minimum in Hg isotopes is observed.
Gamma-ray spectroscopy of 192–195Po
Prompt and delayed γ-rays have been observed from very neutron deficient 192–195Po nuclei by using the recoil-decay tagging (RDT) and recoil gating techniques. The yrast levels up to the (10+) state in the 192Po were identified for the first time. Comprehensive data for 194Po rendered it possible to extend the yrast line and to observe several positive and negative parity non-yrast states. In the odd-mass isotopes 193Po and 195Po, favoured and unfavoured states on top of the 13/2+ state have been identified. The results are discussed within the simple vibrator and rotor pictures as well as in the framework of coexisting spherical and deformed-intruder structures.
Coexistence of triaxial and prolate shapes in 171Ir
Abstract Excited states in 171Ir have been observed for the first time. Gamma-rays were assigned to the nucleus by the recoil-decay tagging method. The ground-state band has a structure consistent with an h 11 2 proton coupled to a core of large triaxial deformation. At high spins, a bandcrossing occurs which is interpreted as a change in shape to a prolate deformation. Band-mixing calculations are performed for 171–175Ir. These show that shape-coexistence between triaxial and prolate states in these nuclei follows the same systematics found in their Pt and Os neighbours. The systematics are also compared with deformations calculated for 171–179Ir using the code “Ultimate Cranker”. Dipole b…
Microsecond isomers in 187Tl and 188Pb
Lifetime measurements of states in nuclei with A=187 and 188 have been performed, using reactions between 155Gd and 36Ar and following the transport of evaporation residues to the focal plane of a gas-filled recoil separator. In a separate experiment using the 159Tb(32S, 4n) reaction the γ-decay of isomeric levels in 187Tl has been studied using delayed γ-γ coincidence measurements. From observation of their subsequent γ decay, the mean lifetimes were measured to be 1000 ± 55 ns and 1600 ± 100 ns. Although it was not possible to characterize the isomers completely, they are proposed as candidates for one-proton, two-neutron excitations. In the course of this study, the decay of an isomer in…
γ decay of excited states in 198Rn identified using correlated radioactive decay
The low-lying level structure of the neutron-deficient isotope 198Rn has been studied for the first time, using the 166Er(36Ar,4n) reaction at a beam energy of 175 MeV. Evaporation residues were selected using an in-flight gas-filled separator, RITU, and implanted at the focal plane into a 16-element position-sensitive, passivated ion-implanted planar silicon detector. Prompt γ rays in 198Rn were observed at the target position using the JUROSPHERE array of 24 Compton-suppressed germanium detectors, and were identified by the subsequent radioactive decay of associated recoiling ions in the silicon detector. Isotopic assignments of the nuclei produced were made on the basis of the energy and…
Fine structure in the alpha decays of 226U and 230Pu
The nuclei 226U and 230Pu have been populated via reactions involving 208Pb targets bombarded by 22Ne and 26Mg projectiles. Fusion-evaporation residues were separated in-flight using a gas-filled recoil separator. A position-sensitive Si-strip detector was employed at the focal plane in order to identify correlated α-decay chains. Two fine structure α-decay lines have been observed. The first, with an energy of 7385(5) keV, is assigned as the α decay from 226U to the first excited 2+ state of 222Th. The second line, observed for the first time in this work, has an energy of 6961(30) keV and is assigned as the α decay from 230Pu to the first excited 2+ state of 226U. The excitation energy of…
Identification of yrast states in187Pb
gamma-ray spectroscopy of the high-spin states of the neutron-deficient nucleus Pb-187 has been conducted with the Gd-155(Ar-36,4n) reaction. A cascade of three transitions was deduced from gamma-gamma coincidence data gated by detection of recoiling evaporation residues in a gas-filled recoil separator. In an earlier, separate experiment, two of these gamma rays were positively identified with Pb-187 by recoil-gamma coincidence measurements with a high-resolution, recoil mass spectrometer. From comparison with similar sequences in heavier odd-A lead isotopes, the cascade in Pb-187 is associated with the sequence of three E2 transitions from the yrast 25/2(+) level to a low-lying 13/2(+) is…
Coexisting structures in 119I
Abstract High-spin structures of 119 I have been studied by using 13 C and 15 N induced reactions. In all, fifteen ΔI = 1 or 2 bands belonging to 119 I were found. No evidence was found for bands with collective oblate shape, instead, all the observed rotational bands were interpreted to possess a collective prolate shape. A rich tapestry of noncollective states of both negative and positive parity was observed. Based on TRS calculations various configurations at β 2 ≈ 0.17 and γ = 60° were assigned to these states.
Probing the shape of 176Hg along the yrast line
In-beam γ-ray and γ-γ coincidence measurements have been made for the very neutron-deficient nucleus 176Hg using the recoil-decay tagging (RDT) technique. The irregular yrast sequence observed up to I=10ħ indicates that the prolate intruder band, seen in heavier Hg isotopes near the neutron midshell, crosses the nearly spherical ground-state band of 176Hg above I=6ħ. peerReviewed
Strongly coupled bands in the neutron-deficient nucleus167Re
Excited states in the neutron-deficient nucleus Re-167 have been observed in a recoil-tagging experiment performed with the Jurosphere gamma-ray spectrometer in conjunction with the RITU gas-filled ...
High-spin states in205Rn:A new shears band structure?
The high-spin structure of {sup 205}Rn has been investigated for the first time following the {sup 170}Er({sup 40}Ar,5n) and {sup 197}Au({sup 14}N,6n) reactions at beam energies of 183 MeV and 90{endash}110 MeV, respectively, using the Jurosphere and YRAST Ball arrays. Two new cascades have been identified which dominate the high-spin decay. One of these, consisting of ten stretched M1 transitions with unobserved E2 crossover transitions, is interpreted as a shears structure based on the {nu}i{sub 13/2}{sup {minus}1}{circle_times}{pi}i{sub 13/2}{sup 2} (or {nu}i{sub 13/2}{sup {minus}1}{circle_times}{pi}h{sub 9/2}i{sub 13/2}) configuration. {copyright} {ital 1999} {ital The American Physical…
Level structure of 99Nb
The β decay of 97Sr to 97Y has been investigated using ion-guide on-line mass separation and a 10 Ge-detector array to record γ−γ coincidences to a detection limit well below that of former studies. Similarities are found in the β-decay patterns of 99Zr and of its isotone 97Sr and also in the γ-ray decay rates and branchings of the corresponding levels in their respective daughters 99Nb and 97Y. This indicates a persisting influence of the d5/2 neutron shell closure for 99Nb. The level structure of 99Nb and the β-feeding pattern are discussed in the frame of the interacting boson-fermion plus broken pair model and the microscopic quasiparticle phonon model.
γdecay of excited states in198Rnidentified using correlated radioactive decay
The low-lying level structure of the neutron-deficient isotope ${}^{198}\mathrm{Rn}$ has been studied for the first time, using the ${}^{166}\mathrm{Er}{(}^{36}\mathrm{Ar},4n)$ reaction at a beam energy of 175 MeV. Evaporation residues were selected using an in-flight gas-filled separator, RITU, and implanted at the focal plane into a 16-element position-sensitive, passivated ion-implanted planar silicon detector. Prompt $\ensuremath{\gamma}$ rays in ${}^{198}\mathrm{Rn}$ were observed at the target position using the JUROSPHERE array of 24 Compton-suppressed germanium detectors, and were identified by the subsequent radioactive decay of associated recoiling ions in the silicon detector. Is…
First observation of excited states inPo192
\ensuremath{\gamma} rays following the $^{160}\mathrm{Dy}$${(}^{36}$Ar,4n${)}^{192}$Po reaction have been identified by employing a high-transmission gas-filled separator in recoil decay tagging measurements. The deduced level scheme reveals a flattening of the energy systematics, when going towards the neutron midshell indicating that the deformed intruder structures have become yrast. \textcopyright{} 1996 The American Physical Society.
Rotational features of vibrator nucleus118Te
High-spin states in ${}^{118}\mathrm{Te}$ have been populated via heavy-ion induced reactions. Excited states were observed up to $I=32\ensuremath{\Elzxh}$ and, in addition to irregular level sequences, several bands were identified for the first time. The decoupled negative parity bands based upon ${7}^{\ensuremath{-}}$ and ${8}^{\ensuremath{-}}$ states are interpreted to arise from the proton ${h}_{11/2}{g}_{7/2}$ configuration coupled to the $2p\ensuremath{-}2h$ intruder states in ${}^{116}\mathrm{Sn}.$ These bands show very smooth alignment behavior, in accordance with the proton ${h}_{11/2}$ bands in neighboring Sb and I nuclei. Above $I=20$ the yrast positive parity band is built on t…
New interpretation of shape coexistence in99Zr
Levels in ${}^{99}\mathrm{Zr}$ populated by $\ensuremath{\beta}$ decay of on-line mass separated ${}^{99}$Y have been studied by $\ensuremath{\gamma}$-ray spectroscopic methods, including $\ensuremath{\gamma}$-$\ensuremath{\gamma}$ coincidences recorded with an array of ten Ge detectors and level-lifetime measurements. The formerly reported strongly collective character of the 53-keV transition turns out to be questionable. This implies a revision of the experimental evidence for shape coexistence in ${}^{99}\mathrm{Zr}.$ Transition rates and $\ensuremath{\gamma}$-ray branching ratios make a new level at 679 keV with ${t}_{1/2}=9$ ns another candidate for a deformed state.
In-beam study of 254No
Excited states of the Z = 102 nuclide 254No have been studied in the reaction 208Pb(48Ca,2n) by means of in-beam γ -ray spectroscopy in combination with recoil gating and recoil decay tagging. A Ge detector array, consisting of four clover detectors, and a gas-filled separator were used. Six γ-ray lines were observed and associated with E2 transitions in the ground state band of 254No, the highest-lying of these being the 16+→ 14+ transition. Based on global systematics and the extrapolated 2+ 1 excitation energy, the value β2= 0.27 ± 0.03 was extracted for the quadrupole deformation. An improved value for the half-life of 254No, T1/2= (48 ± 3) s, was determined.
Identification of theKπ=8−rotational band in138Gd
A ${K}^{\ensuremath{\pi}}{=8}^{\ensuremath{-}}$ collective rotational band has been established upon the 6 $\ensuremath{\mu}$s isomeric state in the very neutron-deficient nucleus ${}^{138}\mathrm{Gd}.$ The band was observed using a technique involving the correlation of $\ensuremath{\gamma}$-ray transitions across the isomeric state. The single-particle configuration of the isomer has been deduced from the $\ensuremath{\Delta}I=2$ to $\ensuremath{\Delta}I=1$ intensity branching ratios. In addition, a series of other $\ensuremath{\gamma}$-ray transitions were observed which are reasoned to be part of a higher-lying four quasiparticle structure which decays through the ${K}^{\ensuremath{\pi}…
Coexisting structures in 115Sn and 116Sn
Abstract Excited states up to I ≈ 20 in 115 Sn and 116 Sn, populated via the ( 18 O, αxn) reactions, have been studied using the DORIS Ge detector array in conjunction with charged particle detectors. In both nuclei, spherical as well as regular, deformed level structures were found. The spherical states are interpreted to arise from pure neutron configurations, while the deformed, intruder bands obviously involve proton 2p-2h excitations across the Z = 50 shell gap.
Probing structural changes in the very neutron-deficient Os isotopes with recoil-decay tagging
In recent years, the exploitation of the iecoil-decay tagging (RDT) technique with,large arrays of germanium detectors has revealed much information about the structure of heavy nuclei approaching the proton drip line. The yrast bands of the N <= 93 osmium isotopes have been identified in a campaign of tagging experiments using various spectrometer arrays coupled to the RITU gas-filled separator based at the University of Jyvaskyla. Trends in the yrast state excitation energies have indicated a transition from gamma-soft triaxial to near-spherical shapes with decreasing neutron number. Recent experimental results for Os-162 obtained with the JUROGAM and GREAT spectrometers also indicate the…
First observation of excited states in the neutron deficient N = 86 isotones 159Ta and 160W
The γ decays of excited states in the neutron deficient nuclei 159 Ta and 160 W have been identified for the first time. The nuclei of interest were produced in reactions induced by beams of 58 Ni ions at energies of 286 MeV, 291 MeV, and 298 MeV bombarding a 106 Cd target. Prompt γ rays were recorded using the JUROSPHERE spectrometer and were tagged through the subsequent α decays of associated recoil ions measured in a position-sensitive silicon strip detector at the focal plane of the gas-filled separator RITU. Level schemes have been deduced and compared with similar structures observed in neighboring nuclei. peerReviewed
Spectroscopy of very neutron-deficient 187,189Bi isotopes
Shape coexistence is well known to occur in nuclei, in particular near closed shells [1], where particle-hole excitations across the shell gap can create deformed intruder states. In the neutron-deficient lead isotopes (Z = 82), deformed structures appear at low excitation energy. The isotope 188Pb [2] shows for example a triple shape coexistence with oblate and prolate excited 0+ states that compete with the spherical ground state. The study of the odd-proton single-particle excitations in Bi isotopes allows to obtain information on the orbitals involved in the different shapes observed in this mass region.
Decays of theY97isomers to the single neutron nucleusZr97
The decays of the 9/2(+) and of the three-quasiparticle high spin isomer in Y-97 have been investigated following on-line mass separation with the ion-guide technique. Spins and parities for several of the lowest-lying levels in the daughter nucleus Zr-97 are revised and configurations are proposed. In particular, the 2264 keV level is identified as the h(11/2) single-neutron level. The population of a cascade on top of the h(11/2) level provides evidence for Gamow-Teller beta decay of the high-spin Y-97 isomer. Levels and transition rates are qualitatively well reproduced by regarding Zr-97 as a single-neutron nucleus with respect to the doubly closed Zr-96 core.
Bandcrossings in 171Os
The nucleus Os-171 has been populated using the reaction Sn-116(Ni-58,2pn). Four new bands are identified, and the previously known bands are extended in spin, to a maximum of 53/2 (h) over bar. On ...
Recent applications of the JYFL gas-filled recoil separator
Abstract The gas-filled recoil separator RITU at the Department of Physics, University of Jyvaskyla (JYFL) was constructed in 1992–1993, and the first experiments were performed in late 1993. RITU differs from other gas-filled separators by having a vertically focusing quadrupole magnet in front of the separating dipole for better matching with the dipole acceptance. New results from RITU include the discovery of 13 previously unpublished isotopes of At, Rn, Fr, Ra, Ac and Th, while experiments in the transuranium region have also been made. Illustrative examples from these studies together with results on background properties, efficiency of separation, and other performance data will be p…
Decay and in-beam studies of neutron-deficient Po and Ra isotopes at JYFL
An extensive program to study the production, decay properties, and nuclear structure of very neutron-deficient polonium and radium nuclei is underway at the Department of Physics, University of Jyvaskyla, Finland (JYFL). The main tools used in these studies are the gas-filled recoil separator RITU and various germanium gamma-ray arrays. In the course of these studies, among others the following new isotopes have been produced: Ra-204, Ra-203, and Ra-202. Isomeric alpha decaying states have been discovered in Ra-203 and Po-191. Fine structure in the decay of Po-192 to the oblate and prolate band heads in Pb-188 has been observed. In-beam gamma-ray spectra have been, for the first time, meas…
Access to Gamma-ray Spectroscopy of Neutron-Rich sdfp Shell Nuclei
γ-rays in neutron-rich sdfp shell nuclei, produced in deep-inelastic processes during collisions of 37Cl and 40Ar ions on 208Pb and of 48Ca ions on 48Ca, have been studied using large Ge multidetector arrays. Candidates for new yrast states in heavy argon and sulfur isotopes have been identified.
First observation of excited states in $^{197}$At: the onset of deformation in neutron-deficient astatine nuclei
Excited states in the Z= 85 nucleus 197At have been identified for the first time using the recoil-decay-tagging (RDT) technique. The excitation energy of these states is found to be consistent with the systematics of neutron-deficient astatine nuclei and with theoretical calculations indicating that the nucleus may be deformed in its ground state.
Competition of fission with the population of the yrast superdeformed band in $^{194}$Pb
The 194Pb yrast superdeformed band has been populated in two reactions induced by two different beams delivered by the JYFL cyclotron. These two reactions differ in the asymmetry ratio (i.e. the ratio of the target mass over the projectile one) by more than a factor 3. For the first time, a superdeformed band of the A≈190 mass region has been populated using such a very heavy beam, namely 74Ge.
First observation of excited states in the neutron deficient nuclei Pt and Pt
Abstract Excited states have been observed for the first time in 168 Pt and 170 Pt using the α -decay recoil-tagging technique. The trend of decreasing deformation moving away from the N =104 mid-shell continues for 170 Pt but the structure of 168 Pt is significantly different. The low spin level energy systematics in 168 – 184 Pt are presented and discussed within the framework of the interacting boson model.
Identification of excited states in 167Os and 168Os: shape coexistence at extreme neutron deficiency
Excited states in the very neutron-deficient isotopes Os-167 and Os-168 have been observed using the reaction Sn-112(Ni-58, 2pxn). The JUROSPHERE gamma -ray spectrometer array was used in conjuncti ...
Search for very long-lived isomers in the hafnium-tungsten region
Targets of ${}^{48}\mathrm{Ca}$ have been bombarded with ${}^{134,136}\mathrm{Xe}$ beams as part of a search for long-lived, high-K states in well-deformed nuclei with $A\ensuremath{\approx}180.$ Several known isomers were observed by off-line \ensuremath{\gamma}-ray detection, and limits have been established for high-K isomer production in various isotopes of hafnium $(A=175--178),$ tantalum $(A=177--181),$ and tungsten $(A=177--181).$
Probing shapes of very neutron deficientZ≈82 nuclei using the recoil-decay tagging method
The JYFL gas-filled recoil separator, RITU, combined with efficient Ge-detector arrays has been employed in in-beam γ-ray studies of very neutron-deficient nuclei close to theZ=82 shell. Gamma-rays from nuclei produced at the few μb cross-section level have been detected.