0000000000433293

AUTHOR

Arvi Freiberg

0000-0003-1902-8444

Spectroscopic and quantum chemical study of pressure effects on solvated chlorophyll

Abstract Hydrostatic pressure effects up to 907 MPa on absorption spectra of chlorophyll a molecules dissolved in diethyl ether have been studied at ambient temperature both experimentally and theoretically using quantum chemistry methods. The fluorescence spectra are studied only experimentally. The data suggest that coordination interactions between the central Mg atom of the chlorophyll and solvent molecules along with interactions that modify the porphyrin skeleton of the solute are responsible for the observed differences of pressure dependence of the Q y , Q x , and Soret spectral bands. The coordination number of the Mg atom changes from five to six between 400 and 600 MPa.

research product

Excitonic energy level structure and pigment-protein interactions in the recombinant water-soluble chlorophyll protein. II. Spectral hole-burning experiments.

Persistent spectral hole burning at 4.5 K has been used to investigate the excitonic energy level structure and the excited state dynamics of the recombinant class-IIa water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The hole-burned spectra are composed of four main features: (i) a narrow zero-phonon hole (ZPH) at the burn wavelength, (ii) a number of vibrational ZPHs, (iii) a broad low-energy hole at ~665 and ~683 nm for chlorophyll b- and chlorophyll a-WSCP, respectively, and (iv) a second satellite hole at ~658 and ~673 nm for chlorophyll b- and chlorophyll a-WSCP, respectively. The doublet of broad satellite holes is assigned to an excitonically coupled chlorophyll dim…

research product

Excitonic Energy Level Structure and Pigment−Protein Interactions in the Recombinant Water-Soluble Chlorophyll Protein. I. Difference Fluorescence Line-Narrowing

Difference fluorescence line-narrowing spectroscopy at 4.5 K was employed to investigate electron-phonon and electron-vibrational coupling strengths of the lower exciton level of water-soluble chlorophyll-binding protein (WSCP) from cauliflower reconstituted with chlorophyll a or chlorophyll b, respectively. The electron-phonon coupling is found to be moderate with integral Huang-Rhys factors S in the order of 0.81-0.85. A weak dependence of S on excitation wavelength within the inhomogeneously broadened fluorescence origin band is attributed to a sizable contribution of nonresonant excitation that varies with excitation wavelength. The strongly asymmetric and highly structured one-phonon p…

research product

Quantum Chemical Simulations of Excited-State Absorption Spectra of Photosynthetic Bacterial Reaction Center and Antenna Complexes

The semiempirical ZINDO/S CIS configuration interaction method has been used to study the ground- and excited-state absorption spectra of wild type and heterodimer M202HL reaction centers from purple bacterium Rhodobacter sphaeroides as well as of peripheral LH2 and LH3 light harvesting complexes from purple bacterium Rhodopseudomonas acidophila. The calculations well reproduce the experimentally observed excited-state absorption spectra between 1000 and 17,000 cm(-1), despite the necessarily limited number of chromophores and protein subunits involved in the calculations. The electron density analysis reveals that the charge transfer between adjacent chromophores dominates the excited-stat…

research product

Red Spectral Forms of Chlorophylls in Green Plant PSI - A Site-Selective and High-Pressure Spectroscopy Study

One of the special spectroscopic characteristics of photosystem I (PSI) complexes is that they possess absorption and emission bands at lower energy than those of the reaction center. In this paper, the red pigment pools of PSI-200, PSI-core, and LHCI complex from Arabidopsis thaliana have been characterized at low temperatures by means of spectrally selective (hole-burning and fluorescence line-narrowing) and high-pressure spectroscopic techniques. It was shown that the green plant PSI-200 complex has at least three red pigment pools, from which two are located in the PSI-core and one, in the peripheral light-harvesting complex I (LHCI). All of the red pigment pools are characterized by st…

research product

Contributory presentations/posters

research product