0000000000433442
AUTHOR
Mikael Signahl
showing 5 related works from this author
Hilbert Space Embeddings for Gelfand–Shilov and Pilipović Spaces
2017
We consider quasi-Banach spaces that lie between a Gelfand–Shilov space, or more generally, Pilipovi´c space, \(\mathcal{H}\), and its dual, \(\mathcal{H}^\prime\) . We prove that for such quasi-Banach space \(\mathcal{B}\), there are convenient Hilbert spaces, \(\mathcal{H}_{k}, k=1,2\), with normalized Hermite functions as orthonormal bases and such that \(\mathcal{B}\) lies between \(\mathcal{H}_1\; \mathrm{and}\;\mathcal{H}_2\), and the latter spaces lie between \(\mathcal{H}\; \mathrm{and}\;\mathcal{H}^\prime\).
Mapping properties for the Bargmann transform on modulation spaces
2010
We investigate mapping properties for the Bargmann transform and prove that this transform is isometric and bijective from modulation spaces to convenient Banach spaces of analytic functions.
Remarks on mapping properties for the Bargmann transform on modulation spaces
2011
We investigate the mapping properties for the Bargmann transform and prove that this transform is isometricand bijective from modulation spaces to convenient Banach spaces of analytic functions.
Factorizations and Singular Value Estimates of Operators with Gelfand–Shilov and Pilipović kernels
2017
We prove that any linear operator with kernel in a Pilipović or Gelfand–Shilov space can be factorized by two operators in the same class. We also give links on numerical approximations for such compositions. We apply these composition rules to deduce estimates of singular values and establish Schatten–von Neumann properties for such operators. nivå2
Almost Sharp Global Well-Posedness for a class of Dissipative and Dispersive Equations on R in Low Regularity Sobolev Spaces
2014
In this paper we obtain global well-posedness in low order Sobolev spaces of higher order KdV type equations with dissipation. The result is optimal in the sense that the flow-map is not twice continuously differentiable in rougher spaces. The solution is shown to be smooth for positive times.