6533b81ffe1ef96bd1276fe3
RESEARCH PRODUCT
Hilbert Space Embeddings for Gelfand–Shilov and Pilipović Spaces
Mikael SignahlJoachim ToftYuanyuan Chensubject
CombinatoricsPhysicsMathematics::Functional Analysissymbols.namesakeHilbert manifoldMathematical analysisHilbert spacesymbolsOrthonormal basisHermite functionsSpace (mathematics)Prime (order theory)description
We consider quasi-Banach spaces that lie between a Gelfand–Shilov space, or more generally, Pilipovi´c space, \(\mathcal{H}\), and its dual, \(\mathcal{H}^\prime\) . We prove that for such quasi-Banach space \(\mathcal{B}\), there are convenient Hilbert spaces, \(\mathcal{H}_{k}, k=1,2\), with normalized Hermite functions as orthonormal bases and such that \(\mathcal{B}\) lies between \(\mathcal{H}_1\; \mathrm{and}\;\mathcal{H}_2\), and the latter spaces lie between \(\mathcal{H}\; \mathrm{and}\;\mathcal{H}^\prime\).
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2017-01-01 |