Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures
We present a detailed description of the semi-quantum approach to the molecular dynamics simulation of stochastic dynamics of a system of interacting particles. Within this approach, the dynamics of the system is described with the use of classical Newtonian equations of motion in which the quantum effects are introduced through random Langevin-like forces with a specific power spectral density (the color noise). The color noise describes the interaction of the molecular system with the thermostat. We apply this technique to the simulation of the thermal properties of different low-dimensional nanostructures. Within this approach, we simulate the specific heat and heat transport in carbon n…
Semi-quantum approach to molecular dynamics simulation of thermal properties of low-dimensional nanostructures
We present a detailed description of semi-quantum molecular dynamics simulation of stochastic dynamics of a system of interacting particles. Within this approach, the dynamics of the system is described with the use of classical Newtonian equations of motion in which the effects of phonon quantum statistics are introduced through random Langevin-like forces with a specific power spectral density (the color noise). The color noise describes the interaction of the molecular system with the thermostat. We apply this technique to the simulation of thermal properties and heat transport in different low-dimensional nanostructures. We describe the determination of temperature in quantum lattice sy…
Effects of quantum statistics of phonons on the thermal conductivity of silicon and germanium nanoribbons.
: We present molecular dynamics simulation of phonon thermal conductivity of semiconductor nanoribbons with an account for phonon quantum statistics. In our semiquantum molecular dynamics simulation, dynamics of the system is described with the use of classical Newtonian equations of motion where the effect of phonon quantum statistics is introduced through random Langevin-like forces with a specific power spectral density (color noise). The color noise describes interaction of the molecular system with the thermostat. The thermal transport of silicon and germanium nanoribbons with atomically smooth (perfect) and rough (porous) edges are studied. We show that the existence of rough (porous)…
Reduction of phonon thermal conductivity in nanowires and nanoribbons with dynamically rough surfaces and edges
We present an analytical model and molecular-dynamics simulations of the phonon heat transport in nanowires and nanoribbons with anharmonic lattices and dynamically rough surfaces and edges. In agreement with recent experiments on heat transport in single-crystalline silicon nanowires with rough surfaces, our model and simulations predict finite and length-independent phonon thermal conductivity in such quasi–one-dimensional systems, in contrast to anomalous phonon thermal conductivity of corresponding momentum-conserving systems with atomically smooth surfaces, divergent with the system length. Within our model, the main cause of thermal conductivity reduction is the momentum-nonconserving…