0000000000433749

AUTHOR

Samuel I. Stupp

showing 3 related works from this author

Dynamic In Vivo Biocompatibility of Angiogenic Peptide Amphiphile Nanofibers

2009

Biomaterials that promote angiogenesis have great potential in regenerative medicine for rapid revascularization of damaged tissue, survival of transplanted cells, and healing of chronic wounds. Supramolecular nanofibers formed by self-assembly of a heparin-binding peptide amphiphile and heparan sulfate-like glycosaminoglycans were evaluated here using a dorsal skinfold chamber model to dynamically monitor the interaction between the nanofiber gel and the microcirculation, representing a novel application of this model. We paired this model with a conventional subcutaneous implantation model for static histological assessment of the interactions between the gel and host tissue. In the stati…

Materials scienceBiocompatibilityAngiogenesisBiophysicsConnective tissueBioengineeringBiocompatible Materials02 engineering and technology010402 general chemistry01 natural sciencesRegenerative medicineArticleMicrocirculationBiomaterialsMiceImplants ExperimentalFluorescence microscopemedicinePeptide amphiphileAnimalsAngiogenic ProteinsMicrocirculation021001 nanoscience & nanotechnology0104 chemical sciences3. Good healthmedicine.anatomical_structureMicroscopy FluorescenceMechanics of MaterialsNanofiberCeramics and CompositesFemaleHeparitin Sulfate0210 nano-technologyBiomedical engineering
researchProduct

Programmable assembly of peptide amphiphile via noncovalent-to-covalent bond conversion

2017

Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses r…

Mechanical bondStereochemistryChemistry MultidisciplinaryStatic ElectricitySupramolecular chemistry02 engineering and technology010402 general chemistryPhotochemistryNANOSTRUCTURES01 natural sciencesBiochemistryArticleCatalysisSupramolecular assemblySurface-Active AgentsColloid and Surface ChemistryMicroscopy Electron TransmissionSYSTEMSPeptide amphiphileDRUG-DELIVERYCONTROLLED LENGTHchemistry.chemical_classificationScience & TechnologyMICELLESMolecular StructureChemistryHydrogen bondIntermolecular forceHydrogen BondingGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSUPRAMOLECULAR POLYMERSSupramolecular polymersChemistryPOLYMERIZATIONCovalent bondPhysical SciencesGROWTHPeptides0210 nano-technologyNANOFIBERS
researchProduct

Evaluation of the tissue reaction to a new bilayered collagen matrix in vivo and its translation to the clinic.

2011

This study evaluates a new collagen matrix that is designed with a bilayered structure in order to promote guided tissue regeneration and integration within the host tissue. This material induced a mild tissue reaction when assessed in a murine model and was well integrated within the host tissue, persisting in the implantation bed throughout the in vivo study. A more porous layer was rapidly infiltrated by host mesenchymal cells, while a layer designed to be a barrier allowed cell attachment and host tissue integration, but at the same time remained impermeable to invading cells for the first 30 days of the study. The tissue reaction was favorable, and unlike a typical foreign body respons…

MaleMaterials scienceBiomedical EngineeringConnective tissueNeovascularization PhysiologicBioengineeringContext (language use)Pilot ProjectsMatrix (biology)BiomaterialsMiceMaterials TestingmedicineAnimalsHumansTissue ScaffoldsRegeneration (biology)Foreign-Body ReactionMesenchymal stem cellGranulation tissueSoft tissueBiomaterialCell biologymedicine.anatomical_structureGuided Tissue Regeneration PeriodontalMicroscopy Electron ScanningFemaleCollagenPorosityBiomedical engineeringBiomedical materials (Bristol, England)
researchProduct